![]()  | 
  
    SG++-Doxygen-Documentation
    
   | 
 
Marginalize Probability Density Function. More...
#include <OperationDensityMargTo1D.hpp>
Public Member Functions | |
| virtual void | margToDimX (base::DataVector *alpha, base::Grid *&grid_x, base::DataVector *&alpha_x, size_t dim_x) | 
| Keep applying marginalizes to (Density) Functions, until it's reduced to 1 dimension (dim_x)  More... | |
| virtual void | margToDimXs (base::DataVector *alpha, base::Grid *&grid_x, base::DataVector *&alpha_x, std::vector< size_t > &dim_x) | 
| Keep applying marginalizes to (Density) Functions, until it's reduced to d dimensions (dim_x)  More... | |
| OperationDensityMargTo1D (base::Grid *grid) | |
| virtual | ~OperationDensityMargTo1D () | 
Protected Member Functions | |
| void | computeMarginalizationIndices (std::vector< size_t > &dim_x, size_t numDims, std::vector< size_t > &margDims) | 
| void | marg_next_dim (base::Grid *g_in, base::DataVector *a_in, base::Grid *&g_out, base::DataVector *&a_out, std::vector< size_t > margDims, size_t ix) | 
Protected Attributes | |
| base::Grid * | grid | 
Marginalize Probability Density Function.
      
  | 
  inlineexplicit | 
      
  | 
  inlinevirtual | 
References alpha, margToDimX(), and margToDimXs().
      
  | 
  protected | 
References python.leja::count, and python.statsfileInfo::i.
Referenced by margToDimXs().
      
  | 
  protected | 
References sgpp::op_factory::createOperationDensityMarginalize(), and sgpp::datadriven::OperationDensityMarginalize::doMarginalize().
Referenced by margToDimXs().
      
  | 
  virtual | 
Keep applying marginalizes to (Density) Functions, until it's reduced to 1 dimension (dim_x)
| alpha | Coefficient vector for current grid | 
| grid_x | output 1D grid pointer | 
| alpha_x | Coefficient vector for new grid (grid_x). Will be initialized. | 
| dim_x | Target dimension, all other dimensions will be marginalized | 
References sgpp::base::Grid::getDimension(), grid, and margToDimXs().
Referenced by sgpp::datadriven::OperationDensitySamplingLinear::doSampling(), sgpp::datadriven::OperationDensitySamplingLinear::doSampling_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBsplineBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationLinear::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBsplineBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationLinear::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyClenshawCurtisBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyClenshawCurtisBoundary::doTransformation_in_next_dim(), and ~OperationDensityMargTo1D().
      
  | 
  virtual | 
Keep applying marginalizes to (Density) Functions, until it's reduced to d dimensions (dim_x)
| alpha | Coefficient vector for current grid | 
| grid_x | output 1D grid pointer | 
| alpha_x | Coefficient vector for new grid (grid_x). Will be initialized. | 
| dim_x | Target dimension, all other dimensions will be marginalized | 
References sgpp::base::Grid::clone(), computeMarginalizationIndices(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), sgpp::base::DataVector::getSize(), grid, python.statsfileInfo::i, marg_next_dim(), and sgpp::base::DataVector::set().
Referenced by margToDimX(), and ~OperationDensityMargTo1D().
      
  | 
  protected | 
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), margToDimX(), margToDimXs(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().