SG++-Doxygen-Documentation
|
Marginalize Probability Density Function. More...
#include <OperationDensityMargTo1D.hpp>
Public Member Functions | |
virtual void | margToDimX (base::DataVector *alpha, base::Grid *&grid_x, base::DataVector *&alpha_x, size_t dim_x) |
Keep applying marginalizes to (Density) Functions, until it's reduced to 1 dimension (dim_x) More... | |
virtual void | margToDimXs (base::DataVector *alpha, base::Grid *&grid_x, base::DataVector *&alpha_x, std::vector< size_t > &dim_x) |
Keep applying marginalizes to (Density) Functions, until it's reduced to d dimensions (dim_x) More... | |
OperationDensityMargTo1D (base::Grid *grid) | |
virtual | ~OperationDensityMargTo1D () |
Protected Member Functions | |
void | computeMarginalizationIndices (std::vector< size_t > &dim_x, size_t numDims, std::vector< size_t > &margDims) |
void | marg_next_dim (base::Grid *g_in, base::DataVector *a_in, base::Grid *&g_out, base::DataVector *&a_out, std::vector< size_t > margDims, size_t ix) |
Protected Attributes | |
base::Grid * | grid |
Marginalize Probability Density Function.
|
inlineexplicit |
|
inlinevirtual |
References alpha, margToDimX(), and margToDimXs().
|
protected |
References python.leja::count, and python.statsfileInfo::i.
Referenced by margToDimXs().
|
protected |
References sgpp::op_factory::createOperationDensityMarginalize(), and sgpp::datadriven::OperationDensityMarginalize::doMarginalize().
Referenced by margToDimXs().
|
virtual |
Keep applying marginalizes to (Density) Functions, until it's reduced to 1 dimension (dim_x)
alpha | Coefficient vector for current grid |
grid_x | output 1D grid pointer |
alpha_x | Coefficient vector for new grid (grid_x). Will be initialized. |
dim_x | Target dimension, all other dimensions will be marginalized |
References sgpp::base::Grid::getDimension(), grid, and margToDimXs().
Referenced by sgpp::datadriven::OperationDensitySamplingLinear::doSampling(), sgpp::datadriven::OperationDensitySamplingLinear::doSampling_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBsplineBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationLinear::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBsplineBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModBspline::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPoly::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationLinear::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationModBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationInverseRosenblattTransformationPolyClenshawCurtisBoundary::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationModBsplineClenshawCurtis::doTransformation_in_next_dim(), sgpp::datadriven::OperationRosenblattTransformationPolyClenshawCurtisBoundary::doTransformation_in_next_dim(), and ~OperationDensityMargTo1D().
|
virtual |
Keep applying marginalizes to (Density) Functions, until it's reduced to d dimensions (dim_x)
alpha | Coefficient vector for current grid |
grid_x | output 1D grid pointer |
alpha_x | Coefficient vector for new grid (grid_x). Will be initialized. |
dim_x | Target dimension, all other dimensions will be marginalized |
References sgpp::base::Grid::clone(), computeMarginalizationIndices(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), sgpp::base::DataVector::getSize(), grid, python.statsfileInfo::i, marg_next_dim(), and sgpp::base::DataVector::set().
Referenced by margToDimX(), and ~OperationDensityMargTo1D().
|
protected |
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), margToDimX(), margToDimXs(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().