SG++-Doxygen-Documentation
|
keep applying marginalize to function until it's reduced to only 1 dimension More...
#include <OperationDensitySamplingLinear.hpp>
Public Member Functions | |
void | doSampling (base::DataVector *alpha, base::DataMatrix *&samples, size_t num_samples) |
Sampling with mixed starting dimensions. More... | |
void | doSampling (base::DataVector *alpha, base::DataMatrix *&samples, size_t num_samples, size_t dim_x) |
Sampling with specified starting dimension. More... | |
OperationDensitySamplingLinear (base::Grid *grid) | |
virtual | ~OperationDensitySamplingLinear () |
Public Member Functions inherited from sgpp::datadriven::OperationDensitySampling | |
OperationDensitySampling () | |
virtual | ~OperationDensitySampling () |
Protected Member Functions | |
void | doSampling_in_next_dim (base::Grid *g_in, base::DataVector *a_in, size_t dim_x, base::DataVector *&sampleVec, size_t &curr_dim, unsigned int *seedp) |
void | doSampling_start_dimX (base::Grid *g_in, base::DataVector *a_in, size_t dim_start, base::DataVector *&sampleVec, unsigned int *seedp) |
Protected Attributes | |
base::Grid * | grid |
keep applying marginalize to function until it's reduced to only 1 dimension
|
inlineexplicit |
|
inlinevirtual |
References alpha, doSampling(), and parabolasimple::samples.
|
virtual |
Sampling with mixed starting dimensions.
alpha | Coefficient vector for current grid |
samples | Output DataMatrix (rows: # of samples, columns: # of dims) |
num_samples | # of samples to draw |
Implements sgpp::datadriven::OperationDensitySampling.
References chess::b, sgpp::op_factory::createOperationDensityMargTo1D(), sgpp::op_factory::createOperationDensitySampling1D(), sgpp::datadriven::OperationDensitySampling1D::doSampling1D(), doSampling_start_dimX(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), sgpp::base::DataVector::getSize(), grid, python.statsfileInfo::i, python.utils.statsfile2gnuplot::j, sgpp::datadriven::OperationDensityMargTo1D::margToDimX(), sgpp::base::DataVector::set(), and sgpp::base::DataMatrix::set().
Referenced by ~OperationDensitySamplingLinear().
|
virtual |
Sampling with specified starting dimension.
alpha | Coefficient vector for current grid |
samples | Output DataMatrix (rows: # of samples, columns: # of dims) |
num_samples | # of samples to draw |
dim_x | Starting dimension |
Implements sgpp::datadriven::OperationDensitySampling.
References chess::b, sgpp::op_factory::createOperationDensityMargTo1D(), sgpp::op_factory::createOperationDensitySampling1D(), sgpp::datadriven::OperationDensitySampling1D::doSampling1D(), doSampling_start_dimX(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), grid, python.statsfileInfo::i, python.utils.statsfile2gnuplot::j, sgpp::datadriven::OperationDensityMargTo1D::margToDimX(), sgpp::base::DataVector::set(), and sgpp::base::DataMatrix::set().
|
protected |
References sgpp::op_factory::createOperationDensityConditional(), sgpp::op_factory::createOperationDensityMargTo1D(), sgpp::op_factory::createOperationDensitySampling1D(), sgpp::datadriven::OperationDensityConditional::doConditional(), sgpp::datadriven::OperationDensitySampling1D::doSampling1D(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), sgpp::base::DataVector::getSize(), sgpp::datadriven::OperationDensityMargTo1D::margToDimX(), and sgpp::base::DataVector::set().
Referenced by doSampling_start_dimX().
|
protected |
References doSampling_in_next_dim(), and sgpp::base::DataVector::getSize().
Referenced by doSampling().
|
protected |
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), doSampling(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().