SG++-Doxygen-Documentation
|
Marginalize Probability Density Function. More...
#include <OperationDensityMarginalize.hpp>
Public Member Functions | |
virtual void | doMarginalize (base::DataVector &alpha, base::Grid *&mg, base::DataVector &malpha, unsigned int mdim) |
Marginalizes (Density) Functions. More... | |
OperationDensityMarginalize (base::Grid *grid) | |
virtual | ~OperationDensityMarginalize () |
Protected Attributes | |
base::Grid * | grid |
Marginalize Probability Density Function.
|
inlineexplicit |
|
inlinevirtual |
References alpha, and doMarginalize().
|
virtual |
Marginalizes (Density) Functions.
alpha | Coefficient vector for current grid |
mg | Referenz of grid pointer |
malpha | Coefficient vector for new grid (mg). Will be resized. |
mdim | Marginalize in dimension mdim |
Note: Because of adaptively refined sparse grids, we cannot simply generate a regular grid. Thus, we need to add point after point to the new grid mg
Compute coefficients for marginalized density Each coefficient has to be weighted with the integral of the basis functions in direction mdim
Attention: The integral of one basis functions changes for if another type of basis is used!
Reimplemented in sgpp::datadriven::OperationDensityMarginalizeLinear.
References sgpp::base::Grid::createGridOfEquivalentType(), sgpp::base::Grid::getBasis(), sgpp::base::HashGridStorage::getDimension(), sgpp::base::HashGridPoint::getIndex(), sgpp::base::HashGridPoint::getLevel(), sgpp::base::HashGridStorage::getPoint(), sgpp::base::HashGridStorage::getSequenceNumber(), sgpp::base::HashGridStorage::getSize(), sgpp::base::Grid::getStorage(), grid, python.statsfileInfo::i, sgpp::base::HashGridStorage::insert(), sgpp::base::HashGridStorage::isContaining(), sgpp::base::HashGridStorage::recalcLeafProperty(), sgpp::base::HashGridPoint::set(), and sgpp::base::DataVector::setAll().
Referenced by sgpp::datadriven::OperationDensityMargTo1D::marg_next_dim(), and ~OperationDensityMarginalize().
|
protected |
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), doMarginalize(), sgpp::datadriven::OperationDensityMarginalizeLinear::doMarginalize(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().