This class implements standard sparse grid regression with an arbitrary regularization operator.  
 More...
 | 
|   | Learner (sgpp::datadriven::RegularizationType ®ularization, const bool isRegression, const bool isVerbose=true) | 
|   | Constructor.  More...
  | 
|   | 
| virtual  | ~Learner () | 
|   | Destructor.  More...
  | 
|   | 
| void  | dumpFunction (std::string tFilename, size_t resolution) | 
|   | simple dump of sparse grid function into file, e.g.  More...
  | 
|   | 
| void  | dumpGrid (std::string tFilename) | 
|   | simple dump of grid points into file, e.g.  More...
  | 
|   | 
| virtual double  | getAccuracy (sgpp::base::DataMatrix &testDataset, const sgpp::base::DataVector &classesReference, const double threshold=0.0) | 
|   | compute the accuracy for given testDataset.  More...
  | 
|   | 
| virtual double  | getAccuracy (const sgpp::base::DataVector &classesComputed, const sgpp::base::DataVector &classesReference, const double threshold=0.0) | 
|   | compute the accuracy for given testDataset.  More...
  | 
|   | 
| sgpp::base::DataVector &  | getAlpha () | 
|   | 
| virtual ClassificatorQuality  | getCassificatorQuality (sgpp::base::DataMatrix &testDataset, const sgpp::base::DataVector &classesReference, const double threshold=0.0) | 
|   | compute the quality for given testDataset, classification ONLY! test is automatically called in order to determine the regression values of the current learner  More...
  | 
|   | 
| virtual ClassificatorQuality  | getCassificatorQuality (const sgpp::base::DataVector &classesComputed, const sgpp::base::DataVector &classesReference, const double threshold=0.0) | 
|   | compute the quality for given testDataset, classification ONLY!  More...
  | 
|   | 
| sgpp::base::Grid &  | getGrid () | 
|   | 
| bool  | getIsRegression () const | 
|   | determines the current mode  More...
  | 
|   | 
| bool  | getIsVerbose () const | 
|   | determines the current verbose mode of learner  More...
  | 
|   | 
| std::vector< std::pair< size_t, double > >  | getRefinementExecTimes () | 
|   | 
|   | LearnerBase (const bool isRegression, const bool isVerbose=true) | 
|   | Constructor.  More...
  | 
|   | 
|   | LearnerBase (const LearnerBase ©Me) | 
|   | Copy-Constructor.  More...
  | 
|   | 
| virtual void  | multTranspose (sgpp::base::DataMatrix &dataset, sgpp::base::DataVector &multiplier, sgpp::base::DataVector &result) | 
|   | 
| virtual void  | predict (sgpp::base::DataMatrix &testDataset, sgpp::base::DataVector &classesComputed) | 
|   | executes a Regression test for a given dataset and returns the result  More...
  | 
|   | 
| void  | setIsVerbose (const bool isVerbose) | 
|   | sets the current verbose mode of learner  More...
  | 
|   | 
| void  | setReuseCoefficients (bool reuseCoefficients) | 
|   | 
| void  | setSolverVerbose (bool solverVerbose) | 
|   | 
| void  | store (std::string tGridFilename, std::string tAlphaFilename) | 
|   | store the grid and its current coefficients into files for further usage.  More...
  | 
|   | 
| virtual LearnerTiming  | train (sgpp::base::DataMatrix &trainDataset, sgpp::base::DataVector &classes, const sgpp::base::RegularGridConfiguration &GridConfig, const sgpp::solver::SLESolverConfiguration &SolverConfigRefine, const sgpp::solver::SLESolverConfiguration &SolverConfigFinal, const sgpp::base::AdaptivityConfiguration &AdaptConfig, bool testAccDuringAdapt, const double lambdaRegularization, sgpp::base::DataMatrix *testDataset=nullptr, sgpp::base::DataVector *testClasses=nullptr) | 
|   | Learning a dataset with spatially adaptive sparse grids.  More...
  | 
|   | 
| LearnerTiming  | train (sgpp::base::DataMatrix &trainDataset, sgpp::base::DataVector &classes, const sgpp::base::RegularGridConfiguration &GridConfig, const sgpp::solver::SLESolverConfiguration &SolverConfig, const double lambdaRegularization) | 
|   | Learning a dataset with regular sparse grids.  More...
  | 
|   | 
| virtual  | ~LearnerBase () | 
|   | Destructor.  More...
  | 
|   | 
This class implements standard sparse grid regression with an arbitrary regularization operator.