SG++-Doxygen-Documentation
|
structure that can be used by application to define adaptivity strategies More...
#include <Grid.hpp>
Public Attributes | |
bool | errorBasedRefinement = false |
other refinement strategy, that is more expensive, but yields better results More... | |
size_t | errorBufferSize = 3 |
amount of error values to consider when checking for convergence in case of error based refinement More... | |
double | errorConvergenceThreshold = 0.001 |
threshold for convergence in case error based refinement is applied More... | |
size_t | errorMinInterval = 0 |
minimum amount of iterations before the next refinement is allowed to happen in case of error based refinement More... | |
bool | levelPenalize = false |
determines if finer grid levels should be penalized when finding points to refine More... | |
bool | maxLevelType_ |
refinement type: false: classic, true: maxLevel More... | |
size_t | noPoints_ |
max. number of points to be refined More... | |
size_t | numRefinements_ |
number of refinements More... | |
double | percent_ = 1.0 |
max. percent of points to be refined More... | |
bool | precomputeEvaluations = true |
in case of zero corssing based refinement: determines if evaluations should be precomupted More... | |
RefinementFunctorType | refinementFunctorType = RefinementFunctorType::Surplus |
refinement indicator More... | |
size_t | refinementPeriod = 1 |
refinement will be triggered each refinementPeriod instances (approximately) in case of non error based refinement More... | |
std::vector< double > | scalingCoefficients = std::vector<double>() |
in case of data based refinements: determines the scaling coefficients for each class More... | |
double | threshold_ |
refinement threshold for surpluses More... | |
structure that can be used by application to define adaptivity strategies
bool sgpp::base::AdaptivityConfiguration::errorBasedRefinement = false |
other refinement strategy, that is more expensive, but yields better results
Referenced by sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), sgpp::datadriven::FitterConfigurationDensityEstimation::setupDefaults(), and sgpp::datadriven::LearnerBase::train().
size_t sgpp::base::AdaptivityConfiguration::errorBufferSize = 3 |
amount of error values to consider when checking for convergence in case of error based refinement
Referenced by sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().
double sgpp::base::AdaptivityConfiguration::errorConvergenceThreshold = 0.001 |
threshold for convergence in case error based refinement is applied
Referenced by sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().
size_t sgpp::base::AdaptivityConfiguration::errorMinInterval = 0 |
minimum amount of iterations before the next refinement is allowed to happen in case of error based refinement
Referenced by sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().
bool sgpp::base::AdaptivityConfiguration::levelPenalize = false |
determines if finer grid levels should be penalized when finding points to refine
Referenced by sgpp::datadriven::ModelFittingClassification::fit(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().
bool sgpp::base::AdaptivityConfiguration::maxLevelType_ |
refinement type: false: classic, true: maxLevel
Referenced by sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfigurationLeastSquares::setupDefaults(), sgpp::datadriven::LearnerBaseSP::train(), and sgpp::datadriven::LearnerBase::train().
size_t sgpp::base::AdaptivityConfiguration::noPoints_ |
max. number of points to be refined
Referenced by doAllRefinements(), sgpp::datadriven::LearnerSGDEOnOffParallel::doRefinementForAll(), sgpp::datadriven::ModelFittingClassification::fit(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), sgpp::datadriven::RegressionLearner::getMSE(), sgpp::datadriven::RefinementHandler::handleSurplusBasedRefinement(), hpx_main(), sgpp::datadriven::LearnerSGDEConfiguration::initConfig(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::initConfig(), sgpp::datadriven::LearnerSGDEConfiguration::LearnerSGDEConfiguration(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfigurationLeastSquares::setupDefaults(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::SparseGridDensityEstimatorConfiguration(), sgpp::datadriven::LearnerSGD::train(), sgpp::datadriven::LearnerSVM::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::SparseGridDensityEstimator::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().
size_t sgpp::base::AdaptivityConfiguration::numRefinements_ |
number of refinements
Referenced by sgpp::datadriven::RefinementHandler::checkRefinementNecessary(), sgpp::datadriven::RosenblattTransformation::createSGDELearner(), doAllRefinements(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), sgpp::datadriven::LearnerSGDEConfiguration::initConfig(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::initConfig(), sgpp::datadriven::LearnerSGDEConfiguration::LearnerSGDEConfiguration(), main(), sgpp::datadriven::ModelFittingClassification::refine(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfigurationDensityEstimation::setupDefaults(), sgpp::datadriven::FitterConfigurationLeastSquares::setupDefaults(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::SparseGridDensityEstimatorConfiguration(), sgpp::datadriven::LearnerSGD::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::RegressionLearner::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::SparseGridDensityEstimator::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().
double sgpp::base::AdaptivityConfiguration::percent_ = 1.0 |
max. percent of points to be refined
Referenced by sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfigurationLeastSquares::setupDefaults(), sgpp::datadriven::LearnerBaseSP::train(), and sgpp::datadriven::LearnerBase::train().
bool sgpp::base::AdaptivityConfiguration::precomputeEvaluations = true |
in case of zero corssing based refinement: determines if evaluations should be precomupted
Referenced by sgpp::datadriven::ModelFittingClassification::fit(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::ModelFittingClassification::refine().
RefinementFunctorType sgpp::base::AdaptivityConfiguration::refinementFunctorType = RefinementFunctorType::Surplus |
size_t sgpp::base::AdaptivityConfiguration::refinementPeriod = 1 |
refinement will be triggered each refinementPeriod instances (approximately) in case of non error based refinement
Referenced by sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfigurationDensityEstimation::setupDefaults().
std::vector<double> sgpp::base::AdaptivityConfiguration::scalingCoefficients = std::vector<double>() |
in case of data based refinements: determines the scaling coefficients for each class
Referenced by sgpp::datadriven::ModelFittingClassification::fit(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().
double sgpp::base::AdaptivityConfiguration::threshold_ |
refinement threshold for surpluses
Referenced by doAllRefinements(), sgpp::datadriven::ModelFittingClassification::fit(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), sgpp::datadriven::RegressionLearner::getMSE(), hpx_main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfigurationLeastSquares::setupDefaults(), sgpp::datadriven::LearnerSGD::train(), sgpp::datadriven::LearnerSVM::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::SparseGridDensityEstimator::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().