![]()  | 
  
    SG++-Doxygen-Documentation
    
   | 
 
Functions | |
| def | clean_data (data) | 
| leave only the data points with coordinated greater than zero is convinient for some problems, i.e.  More... | |
| def | create_logger () | 
| def | norm (mat) | 
| normalization on [0,1] interval  More... | |
| def | remove_outliers (mat, koef, target=None) | 
| remove outliers, where the points deviate on more than koef times standard deviation from the mean  More... | |
Variables | |
| action | |
| args | |
| C = cov(interest_data) | |
| data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') | |
| default | |
| delimiter | |
| dest | |
| filename = options.file_in | |
| help | |
| interest_data = data - means | |
| interest_data_transformed = dot(invV, interest_data).T | |
| invV = inv(V) | |
| def | logger = create_logger() | 
| means = mean(data,axis=0) | |
| options | |
| parser = optparse.OptionParser() | |
| target = data[:, options.target_column] | |
| type | |
| u | |
| V | |
| def python.utils.pca_normalize_dataset.clean_data | ( | data | ) | 
leave only the data points with coordinated greater than zero is convinient for some problems, i.e.
photometric redshift
| def python.utils.pca_normalize_dataset.create_logger | ( | ) | 
| def python.utils.pca_normalize_dataset.norm | ( | mat | ) | 
normalization on [0,1] interval
| mat | matrix points row-wise | 
| def python.utils.pca_normalize_dataset.remove_outliers | ( | mat, | |
| koef, | |||
target = None  | 
        |||
| ) | 
remove outliers, where the points deviate on more than koef times standard deviation from the mean
| mat | matrix points row-wise | 
| koef | koefficient to determine the outliers | 
| target | list with target values for the points | 
References python.datasetAnalysis.mean.
| python.utils.pca_normalize_dataset.action | 
| python.utils.pca_normalize_dataset.args | 
| python.utils.pca_normalize_dataset.C = cov(interest_data) | 
Referenced by sgpp::datadriven::AlgorithmAdaBoostIdentity.alphaSolver(), sgpp::datadriven::SparseGridDensityEstimator.computeDensitySystemMatrix(), sgpp::datadriven::SparseGridDensityEstimator.computeRegularizationMatrix(), sgpp::datadriven::LearnerSGDE.computeRegularizationMatrix(), sgpp::datadriven::LearnerSGDE.computeResidual(), sgpp::datadriven::Learner.createDMSystem(), sgpp::optimization::optimizer::CMAES.optimize(), sgpp::datadriven::DBMatOnlineDE.resDensity(), sgpp::combigrid::BSplineInterpolationCoefficientEvaluator.setGridPoints(), sgpp::datadriven::LearnerSGDE.train(), sgpp::datadriven::LearnerSGDE.trainOnline(), and sgpp::datadriven::ModelFittingDensityEstimationCG.update().
| def python.utils.pca_normalize_dataset.data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') | 
| python.utils.pca_normalize_dataset.default | 
| python.utils.pca_normalize_dataset.delimiter | 
| python.utils.pca_normalize_dataset.dest | 
| python.utils.pca_normalize_dataset.filename = options.file_in | 
| python.utils.pca_normalize_dataset.help | 
| def python.utils.pca_normalize_dataset.interest_data_transformed = dot(invV, interest_data).T | 
| python.utils.pca_normalize_dataset.invV = inv(V) | 
| def python.utils.pca_normalize_dataset.logger = create_logger() | 
| python.utils.pca_normalize_dataset.means = mean(data,axis=0) | 
| python.utils.pca_normalize_dataset.options | 
| python.utils.pca_normalize_dataset.parser = optparse.OptionParser() | 
| python.utils.pca_normalize_dataset.target = data[:, options.target_column] | 
| python.utils.pca_normalize_dataset.type | 
| python.utils.pca_normalize_dataset.u | 
Referenced by sgpp::datadriven::DBMatDMSDenseIChol.choleskyBackwardSolve(), sgpp::datadriven::DBMatDMSDenseIChol.choleskyForwardSolve(), sgpp::datadriven::DBMatOfflineDenseIChol.choleskyModification(), sgpp::datadriven::DBMatOfflineDenseIChol.decomposeMatrix(), python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.estimate(), sgpp::optimization.fastPow(), sgpp::datadriven::ModelFittingClassification.fit(), sgpp::datadriven::DBMatOfflineDenseIChol.ichol(), sgpp::base::ConvertLinearToPrewavelet.operator()(), and sgpp::datadriven::LearnerSGDEOnOffParallel.predict().
| python.utils.pca_normalize_dataset.V | 
Referenced by sgpp::combigrid::CombigridEvaluator< V >.addLevel(), sgpp::combigrid::AbstractLinearEvaluator< FloatTensorVector >.clone(), sgpp::combigrid::FullGridLinearSummationStrategy< V >.eval(), sgpp::combigrid::FullGridPCESummationStrategy< V >.eval(), sgpp::combigrid::FullGridTensorVarianceSummationStrategy< V >.eval(), sgpp::combigrid::FullGridOptimizedPCESummationStrategy< V >.eval(), sgpp::combigrid::AbstractLinearEvaluator< FloatTensorVector >.eval(), sgpp::combigrid::FullGridQuadraticSummationStrategy< V >.eval(), sgpp::combigrid::FullGridVarianceSummationStrategy< V >.eval(), sgpp::optimization::math.hessenbergForm(), sgpp::optimization::math.schurDecomposition(), sgpp::combigrid::AbstractEvaluator< FloatTensorVector >.setLevel(), sgpp::combigrid::AbstractFullGridEvaluator< V >.setMutex(), and sgpp::combigrid::AbstractFullGridSummationStrategy< V >.~AbstractFullGridSummationStrategy().