SG++-Doxygen-Documentation
python.utils.pca_normalize_dataset Namespace Reference

Functions

def clean_data (data)
 leave only the data points with coordinated greater than zero is convinient for some problems, i.e. More...
 
def create_logger ()
 
def norm (mat)
 normalization on [0,1] interval More...
 
def remove_outliers (mat, koef, target=None)
 remove outliers, where the points deviate on more than koef times standard deviation from the mean More...
 

Variables

 action
 
 args
 
 C = cov(interest_data)
 
 data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',')
 
 default
 
 delimiter
 
 dest
 
 filename = options.file_in
 
 help
 
 interest_data = data - means
 
 interest_data_transformed = dot(invV, interest_data).T
 
 invV = inv(V)
 
def logger = create_logger()
 
 means = mean(data,axis=0)
 
 options
 
 parser = optparse.OptionParser()
 
 target = data[:, options.target_column]
 
 type
 
 u
 
 V
 

Function Documentation

◆ clean_data()

def python.utils.pca_normalize_dataset.clean_data (   data)

leave only the data points with coordinated greater than zero is convinient for some problems, i.e.

photometric redshift

◆ create_logger()

def python.utils.pca_normalize_dataset.create_logger ( )

◆ norm()

def python.utils.pca_normalize_dataset.norm (   mat)

normalization on [0,1] interval

Parameters
matmatrix points row-wise

◆ remove_outliers()

def python.utils.pca_normalize_dataset.remove_outliers (   mat,
  koef,
  target = None 
)

remove outliers, where the points deviate on more than koef times standard deviation from the mean

Parameters
matmatrix points row-wise
koefkoefficient to determine the outliers
targetlist with target values for the points

References python.datasetAnalysis.mean.

Variable Documentation

◆ action

python.utils.pca_normalize_dataset.action

◆ args

python.utils.pca_normalize_dataset.args

◆ C

◆ data

def python.utils.pca_normalize_dataset.data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',')

◆ default

python.utils.pca_normalize_dataset.default

◆ delimiter

python.utils.pca_normalize_dataset.delimiter

◆ dest

python.utils.pca_normalize_dataset.dest

◆ filename

python.utils.pca_normalize_dataset.filename = options.file_in

◆ help

python.utils.pca_normalize_dataset.help

◆ interest_data

python.utils.pca_normalize_dataset.interest_data = data - means

◆ interest_data_transformed

def python.utils.pca_normalize_dataset.interest_data_transformed = dot(invV, interest_data).T

◆ invV

python.utils.pca_normalize_dataset.invV = inv(V)

◆ logger

def python.utils.pca_normalize_dataset.logger = create_logger()

◆ means

python.utils.pca_normalize_dataset.means = mean(data,axis=0)

◆ options

python.utils.pca_normalize_dataset.options

◆ parser

python.utils.pca_normalize_dataset.parser = optparse.OptionParser()

◆ target

python.utils.pca_normalize_dataset.target = data[:, options.target_column]

◆ type

python.utils.pca_normalize_dataset.type

◆ u

◆ V