SG++-Doxygen-Documentation
|
Functions | |
def | clean_data (data) |
leave only the data points with coordinated greater than zero is convinient for some problems, i.e. More... | |
def | create_logger () |
def | norm (mat) |
normalization on [0,1] interval More... | |
def | remove_outliers (mat, koef, target=None) |
remove outliers, where the points deviate on more than koef times standard deviation from the mean More... | |
Variables | |
action | |
args | |
C = cov(interest_data) | |
data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') | |
default | |
delimiter | |
dest | |
filename = options.file_in | |
help | |
interest_data = data - means | |
interest_data_transformed = dot(invV, interest_data).T | |
invV = inv(V) | |
def | logger = create_logger() |
means = mean(data,axis=0) | |
options | |
parser = optparse.OptionParser() | |
target = data[:, options.target_column] | |
type | |
u | |
V | |
def python.utils.pca_normalize_dataset.clean_data | ( | data | ) |
leave only the data points with coordinated greater than zero is convinient for some problems, i.e.
photometric redshift
def python.utils.pca_normalize_dataset.create_logger | ( | ) |
def python.utils.pca_normalize_dataset.norm | ( | mat | ) |
normalization on [0,1] interval
mat | matrix points row-wise |
def python.utils.pca_normalize_dataset.remove_outliers | ( | mat, | |
koef, | |||
target = None |
|||
) |
remove outliers, where the points deviate on more than koef times standard deviation from the mean
mat | matrix points row-wise |
koef | koefficient to determine the outliers |
target | list with target values for the points |
References python.datasetAnalysis.mean.
python.utils.pca_normalize_dataset.action |
python.utils.pca_normalize_dataset.args |
python.utils.pca_normalize_dataset.C = cov(interest_data) |
Referenced by sgpp::datadriven::AlgorithmAdaBoostIdentity.alphaSolver(), sgpp::datadriven::SparseGridDensityEstimator.computeDensitySystemMatrix(), sgpp::datadriven::SparseGridDensityEstimator.computeRegularizationMatrix(), sgpp::datadriven::LearnerSGDE.computeRegularizationMatrix(), sgpp::datadriven::LearnerSGDE.computeResidual(), sgpp::datadriven::Learner.createDMSystem(), sgpp::optimization::optimizer::CMAES.optimize(), sgpp::datadriven::DBMatOnlineDE.resDensity(), sgpp::combigrid::BSplineInterpolationCoefficientEvaluator.setGridPoints(), sgpp::datadriven::LearnerSGDE.train(), sgpp::datadriven::LearnerSGDE.trainOnline(), and sgpp::datadriven::ModelFittingDensityEstimationCG.update().
def python.utils.pca_normalize_dataset.data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') |
python.utils.pca_normalize_dataset.default |
python.utils.pca_normalize_dataset.delimiter |
python.utils.pca_normalize_dataset.dest |
python.utils.pca_normalize_dataset.filename = options.file_in |
python.utils.pca_normalize_dataset.help |
def python.utils.pca_normalize_dataset.interest_data_transformed = dot(invV, interest_data).T |
python.utils.pca_normalize_dataset.invV = inv(V) |
def python.utils.pca_normalize_dataset.logger = create_logger() |
python.utils.pca_normalize_dataset.means = mean(data,axis=0) |
python.utils.pca_normalize_dataset.options |
python.utils.pca_normalize_dataset.parser = optparse.OptionParser() |
python.utils.pca_normalize_dataset.target = data[:, options.target_column] |
python.utils.pca_normalize_dataset.type |
python.utils.pca_normalize_dataset.u |
Referenced by sgpp::datadriven::DBMatDMSDenseIChol.choleskyBackwardSolve(), sgpp::datadriven::DBMatDMSDenseIChol.choleskyForwardSolve(), sgpp::datadriven::DBMatOfflineDenseIChol.choleskyModification(), sgpp::datadriven::DBMatOfflineDenseIChol.decomposeMatrix(), python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.estimate(), sgpp::optimization.fastPow(), sgpp::datadriven::ModelFittingClassification.fit(), sgpp::datadriven::DBMatOfflineDenseIChol.ichol(), sgpp::base::ConvertLinearToPrewavelet.operator()(), and sgpp::datadriven::LearnerSGDEOnOffParallel.predict().
python.utils.pca_normalize_dataset.V |
Referenced by sgpp::combigrid::CombigridEvaluator< V >.addLevel(), sgpp::combigrid::AbstractLinearEvaluator< FloatTensorVector >.clone(), sgpp::combigrid::FullGridLinearSummationStrategy< V >.eval(), sgpp::combigrid::FullGridPCESummationStrategy< V >.eval(), sgpp::combigrid::FullGridTensorVarianceSummationStrategy< V >.eval(), sgpp::combigrid::FullGridOptimizedPCESummationStrategy< V >.eval(), sgpp::combigrid::AbstractLinearEvaluator< FloatTensorVector >.eval(), sgpp::combigrid::FullGridQuadraticSummationStrategy< V >.eval(), sgpp::combigrid::FullGridVarianceSummationStrategy< V >.eval(), sgpp::optimization::math.hessenbergForm(), sgpp::optimization::math.schurDecomposition(), sgpp::combigrid::AbstractEvaluator< FloatTensorVector >.setLevel(), sgpp::combigrid::AbstractFullGridEvaluator< V >.setMutex(), and sgpp::combigrid::AbstractFullGridSummationStrategy< V >.~AbstractFullGridSummationStrategy().