SG++-Doxygen-Documentation
|
#include <AlgorithmAdaBoostBase.hpp>
Public Member Functions | |
AlgorithmAdaBoostBase (base::Grid &SparseGrid, size_t gridType, base::level_t gridLevel, base::DataMatrix &trainData, base::DataVector &trainDataClass, size_t NUM, double lambda, size_t IMAX, double eps, size_t IMAX_final, double eps_final, double firstLabel, double secondLabel, double threshold, double maxLambda, double minLambda, size_t searchNum, bool refine, size_t refineMode, size_t refineNum, size_t numberOfAda, double percentOfAda, size_t mode) | |
Std-Constructor. More... | |
void | classif (base::DataMatrix &testData, base::DataVector &algorithmClassTrain, base::DataVector &algorithmClassTest, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
Performs a classify for the testing dataset according to the baselearners get from the algorithm. More... | |
void | doAdaBoostR2 (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, std::string lossFucType) |
Performs the Adaboost.R2(a regression algorithm) More... | |
void | doAdaBoostRT (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, double Tvalue, std::string powerType) |
Performs the Adaboost.RT(a regression algorithm) More... | |
void | doDiscreteAdaBoost (base::DataVector &hypoWeight, base::DataVector &weightError, base::DataMatrix &weights, base::DataMatrix &decision, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
Performs the Discrete Adaboost. More... | |
void | doRealAdaBoost (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
Performs the Real Adaboost. More... | |
void | doRefinement (base::DataVector &alpha_ada, base::DataVector &weight_ada, size_t curBaseLearner) |
Performs refinement of grid to get an adaptive grid. More... | |
void | eval (base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
Performs a real value calculate for the testing dataset. More... | |
void | getAccuracy (base::DataMatrix &testData, base::DataVector &testDataClass, double *accuracy_train, double *accuracy_test) |
Performs an accuracy evaluation for the testing dataset. More... | |
void | getAccuracyBL (base::DataMatrix &testData, base::DataVector &testDataClass, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, double *accuracy_train, double *accuracy_test, size_t yourBaseLearner) |
Performs an accuracy evaluation for the testing dataset with a specified number of base learner. More... | |
size_t | getActualBL () |
Get the actual base learners after doing adaboosting. More... | |
size_t | getMaxGridPoint (size_t baseLearner) |
Get the max GridPoint ever used in adaboosting. More... | |
size_t | getMeanGridPoint (size_t baseLearner) |
Get the mean GridPoint ever used in adaboosting. More... | |
void | getROC (base::DataMatrix &validationData, base::DataVector &validationDataClass, double *acc, double *sensitivity, double *specificity, double *precision, double *recall, double *fOneScore) |
Performs an evaluation to get ROC related parameter. More... | |
size_t | getSumGridPoint (size_t baseLearner) |
Get the sum GridPoint ever used in adaboosting. More... | |
double | hValue (double realValue) |
Performs a hypothesis classifier. More... | |
virtual | ~AlgorithmAdaBoostBase () |
Std-Deconstructor. More... | |
Protected Member Functions | |
virtual void | alphaSolver (double &lambda, base::DataVector &weight, base::DataVector &alpha, bool final)=0 |
Performs a solver to get alpha. More... | |
Protected Attributes | |
size_t | actualBaseLearners |
Actual base learners number for Adaboosting. More... | |
size_t | boostMode |
Set the boost mode (1: Discrete Adaboost, 2: Real Adaboost) More... | |
base::DataVector * | classes |
Pointer to the class(real value in regression) of the data vector. More... | |
base::DataMatrix * | data |
Pointer to the data matrix. More... | |
size_t | dim |
DataSet Dimension. More... | |
double | epsilon |
Parameter for CG solver(during the refinement) More... | |
double | epsilon_final |
Parameter for CG solver(for the last refinement) More... | |
base::Grid * | grid |
the grid More... | |
size_t | gridPoint |
Number of grid points. More... | |
size_t | imax |
Parameter for CG solver(during the refinement) More... | |
size_t | imax_final |
Parameter for CG solver(for the last refinement) More... | |
double | labelOne |
One label of the DataSet. More... | |
double | labelTwo |
Another label of the DataSet. More... | |
double | lamb |
the lambda, the regularisation parameter More... | |
double | lambLogMax |
Log of the Max lambda in searching for optimal lambda. More... | |
size_t | lambSteps |
Number of iteration in searching for optimal lambda. More... | |
double | lambStepsize |
Interval size with logrange used in searching optimal lambda. More... | |
base::level_t | level |
grid level More... | |
base::DataVector * | maxGridPoint |
Number of the maximum grid points used in the algorithm. More... | |
size_t | numBaseLearners |
Number of base learner for Adaboosting. More... | |
size_t | numData |
the size of the grid More... | |
size_t | numOfAda |
Number of Grid points to refine. More... | |
double | perOfAda |
Percentage of Grid points to refine(between 0 and 1) More... | |
bool | refinement |
Judgement of grid refine. More... | |
size_t | refineMode |
Select the refine mode(1:use grid number, 2: use grid number percentage) More... | |
size_t | refineTimes |
Number of refinement with a certain percentage of Grid points. More... | |
base::DataVector * | sumGridPoint |
Number of the sum grid points used in the algorithm. More... | |
double | threshold |
Threshold to predict class. More... | |
size_t | type |
type of grid possible value are 1, 2 or 3(1 = Linear Grid, 2 = LinearL0Boundary Grid, 3 = ModLinear Grid); More... | |
sgpp::datadriven::AlgorithmAdaBoostBase::AlgorithmAdaBoostBase | ( | base::Grid & | SparseGrid, |
size_t | gridType, | ||
base::level_t | gridLevel, | ||
base::DataMatrix & | trainData, | ||
base::DataVector & | trainDataClass, | ||
size_t | NUM, | ||
double | lambda, | ||
size_t | IMAX, | ||
double | eps, | ||
size_t | IMAX_final, | ||
double | eps_final, | ||
double | firstLabel, | ||
double | secondLabel, | ||
double | threshold, | ||
double | maxLambda, | ||
double | minLambda, | ||
size_t | searchNum, | ||
bool | refine, | ||
size_t | refineMode, | ||
size_t | refineNum, | ||
size_t | numberOfAda, | ||
double | percentOfAda, | ||
size_t | mode | ||
) |
Std-Constructor.
SparseGrid | reference to the sparse grid |
gridType | reference to the of grid type(1 = Linear Grid, 2 = LinearL0Boundary Grid, 3 = ModLinear Grid) |
gridLevel | reference to the level of grid |
trainData | reference to the training dataset |
trainDataClass | reference to the class(real value in regression) of training dataset |
NUM | the number of baselearner for Adaboosting |
lambda | the regularisation parameter |
IMAX | the parameter for ConjugateGradients |
eps | the parameter for ConjugateGradients |
IMAX_final | the parameter for ConjugateGradients used for last refinement step |
eps_final | the parameter for ConjugateGradients used for last refinement step |
firstLabel | one label from training dataset |
secondLabel | another label from training dataset |
threshold | the parameter for predicting a class |
maxLambda | the max lambda used in searching optimal lambda |
minLambda | the min lambda used in searching optimal lambda |
searchNum | the searching times used in searching for optimal lambda |
refine | the judgement of refine |
refineMode | Select the refine mode |
refineNum | the Number of refinement with a certain percentage of Grid points |
numberOfAda | the number of Grid points to refine |
percentOfAda | the percentage of Grid points to refine |
mode | the adaboost type to choose |
References actualBaseLearners, boostMode, classes, data, dim, friedman::eps, epsilon, epsilon_final, sgpp::base::HashGridStorage::getDimension(), sgpp::base::DataMatrix::getNrows(), sgpp::base::HashGridStorage::getSize(), sgpp::base::Grid::getStorage(), grid, gridPoint, python.utils.sg_projections::gridStorage, imax, imax_final, labelOne, labelTwo, lamb, lambda, lambLogMax, lambSteps, lambStepsize, level, maxGridPoint, numBaseLearners, numData, numOfAda, perOfAda, python.uq.operations.discretizeProduct::refine(), refinement, refineMode, refineTimes, sumGridPoint, threshold, and type.
|
virtual |
Std-Deconstructor.
|
protectedpure virtual |
Performs a solver to get alpha.
lambda | the regularisation parameter |
weight | the weights of examples |
alpha | output the coefficients of the sparse grid's basis functions |
final | judgement the final step of this base learner |
Implemented in sgpp::datadriven::AlgorithmAdaBoostIdentity.
Referenced by doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), and doRefinement().
void sgpp::datadriven::AlgorithmAdaBoostBase::classif | ( | base::DataMatrix & | testData, |
base::DataVector & | algorithmClassTrain, | ||
base::DataVector & | algorithmClassTest, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest | ||
) |
Performs a classify for the testing dataset according to the baselearners get from the algorithm.
testData | reference to the testing dataset |
algorithmClassTrain | reference to the class of training dataset got from the algorithm |
algorithmClassTest | reference to the class of testing dataset got from the algorithm |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
References eval(), sgpp::base::DataMatrix::get(), sgpp::base::DataMatrix::getNrows(), hValue(), python.statsfileInfo::i, numData, and sgpp::base::DataVector::set().
Referenced by getAccuracy(), and getROC().
void sgpp::datadriven::AlgorithmAdaBoostBase::doAdaBoostR2 | ( | base::DataMatrix & | weights, |
base::DataMatrix & | testData, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest, | ||
std::string | lossFucType | ||
) |
Performs the Adaboost.R2(a regression algorithm)
weights | the matrix to store weights of every training date for every weak learner |
testData | reference to the testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
lossFucType | the loss function type(linear, square or exponential) |
References sgpp::base::DataVector::abs(), actualBaseLearners, alphaSolver(), sgpp::base::DataVector::axpy(), classes, sgpp::base::DataVector::componentwise_mult(), sgpp::base::DataVector::copyFrom(), python.leja::count, sgpp::base::Grid::createLinearBoundaryGrid(), sgpp::base::Grid::createLinearGrid(), sgpp::base::Grid::createModLinearGrid(), sgpp::op_factory::createOperationEval(), data, dim, doRefinement(), sgpp::base::DataVector::dotProduct(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::getColumn(), sgpp::base::Grid::getGenerator(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataMatrix::getRow(), sgpp::base::DataVector::getSize(), grid, gridPoint, python.statsfileInfo::i, lamb, level, sgpp::base::DataVector::max(), maxGridPoint, sgpp::base::DataVector::mult(), numBaseLearners, numData, sgpp::combigrid::pow(), refinement, sgpp::base::GridGenerator::regular(), sgpp::base::DataVector::resizeZero(), sgpp::base::DataVector::set(), sgpp::base::DataVector::setAll(), sgpp::base::DataMatrix::setColumn(), sgpp::base::DataVector::sqr(), sgpp::base::DataVector::sum(), sumGridPoint, type, and python.leja::weight.
void sgpp::datadriven::AlgorithmAdaBoostBase::doAdaBoostRT | ( | base::DataMatrix & | weights, |
base::DataMatrix & | testData, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest, | ||
double | Tvalue, | ||
std::string | powerType | ||
) |
Performs the Adaboost.RT(a regression algorithm)
weights | the matrix to store weights of every training date for every weak learner |
testData | reference to the testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
Tvalue | the threshold to demarcate the prediction correctness(only from 0 to 1) |
powerType | the error rate power coefficient(linear, square or cubic) |
References actualBaseLearners, alphaSolver(), sgpp::base::DataVector::axpy(), classes, sgpp::base::DataVector::copyFrom(), python.leja::count, sgpp::base::Grid::createLinearBoundaryGrid(), sgpp::base::Grid::createLinearGrid(), sgpp::base::Grid::createModLinearGrid(), sgpp::op_factory::createOperationEval(), data, dim, doRefinement(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::getColumn(), sgpp::base::Grid::getGenerator(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataMatrix::getRow(), sgpp::base::DataVector::getSize(), grid, gridPoint, python.statsfileInfo::i, lamb, level, maxGridPoint, sgpp::base::DataVector::mult(), numBaseLearners, numData, refinement, sgpp::base::GridGenerator::regular(), sgpp::base::DataVector::resizeZero(), sgpp::base::DataVector::set(), sgpp::base::DataVector::setAll(), sgpp::base::DataMatrix::setColumn(), sgpp::base::DataVector::sum(), sumGridPoint, type, and python.leja::weight.
void sgpp::datadriven::AlgorithmAdaBoostBase::doDiscreteAdaBoost | ( | base::DataVector & | hypoWeight, |
base::DataVector & | weightError, | ||
base::DataMatrix & | weights, | ||
base::DataMatrix & | decision, | ||
base::DataMatrix & | testData, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest | ||
) |
Performs the Discrete Adaboost.
hypoWeight | the vector to store hypothesis weights(Alpha-t) |
weightError | the vector to store the weight error of each iteration |
weights | the matrix to store weights of every training date for every weak learner |
decision | the matrix to store the decision right or not according to the true class |
testData | reference to the testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
References actualBaseLearners, alphaSolver(), classes, sgpp::base::DataVector::copyFrom(), python.leja::count, sgpp::base::Grid::createLinearBoundaryGrid(), sgpp::base::Grid::createLinearGrid(), sgpp::base::Grid::createModLinearGrid(), sgpp::op_factory::createOperationEval(), data, dim, doRefinement(), sgpp::base::DataVector::dotProduct(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::get(), sgpp::base::Grid::getGenerator(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataMatrix::getRow(), sgpp::base::DataVector::getSize(), grid, gridPoint, hValue(), python.statsfileInfo::i, lamb, lambLogMax, lambSteps, lambStepsize, level, maxGridPoint, sgpp::base::DataVector::mult(), numBaseLearners, numData, refinement, sgpp::base::GridGenerator::regular(), sgpp::base::DataVector::resizeZero(), sgpp::base::DataVector::set(), sgpp::base::DataMatrix::set(), sgpp::base::DataVector::setAll(), sgpp::base::DataMatrix::setColumn(), sgpp::base::DataVector::sum(), sumGridPoint, type, and python.leja::weight.
Referenced by eval().
void sgpp::datadriven::AlgorithmAdaBoostBase::doRealAdaBoost | ( | base::DataMatrix & | weights, |
base::DataMatrix & | testData, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest | ||
) |
Performs the Real Adaboost.
weights | the matrix to store weights of every training date for every weak learner |
testData | reference to the testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
References actualBaseLearners, alphaSolver(), classes, sgpp::base::DataVector::copyFrom(), python.leja::count, sgpp::base::Grid::createLinearBoundaryGrid(), sgpp::base::Grid::createLinearGrid(), sgpp::base::Grid::createModLinearGrid(), sgpp::op_factory::createOperationEval(), data, dim, doRefinement(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::get(), sgpp::base::Grid::getGenerator(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataMatrix::getRow(), sgpp::base::DataVector::getSize(), grid, gridPoint, python.statsfileInfo::i, lamb, level, maxGridPoint, sgpp::base::DataVector::mult(), numBaseLearners, numData, refinement, sgpp::base::GridGenerator::regular(), sgpp::base::DataVector::resizeZero(), sgpp::base::DataVector::set(), sgpp::base::DataMatrix::set(), sgpp::base::DataVector::setAll(), sgpp::base::DataMatrix::setColumn(), sgpp::base::DataVector::sum(), sumGridPoint, type, and python.leja::weight.
Referenced by eval().
void sgpp::datadriven::AlgorithmAdaBoostBase::doRefinement | ( | base::DataVector & | alpha_ada, |
base::DataVector & | weight_ada, | ||
size_t | curBaseLearner | ||
) |
Performs refinement of grid to get an adaptive grid.
alpha_ada | the coefficients of the sparse grid's basis functions and to be refined |
weight_ada | the weights of examples |
curBaseLearner | the current base learner |
References alphaSolver(), sgpp::base::DataVector::get(), sgpp::base::Grid::getGenerator(), sgpp::base::HashGridStorage::getSize(), sgpp::base::Grid::getSize(), sgpp::base::Grid::getStorage(), grid, lamb, maxGridPoint, numOfAda, perOfAda, sgpp::base::GridGenerator::refine(), refineMode, refineTimes, sgpp::base::DataVector::resizeZero(), sgpp::base::DataVector::set(), and sumGridPoint.
Referenced by doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().
void sgpp::datadriven::AlgorithmAdaBoostBase::eval | ( | base::DataMatrix & | testData, |
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest | ||
) |
Performs a real value calculate for the testing dataset.
testData | reference to the testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
References boostMode, doDiscreteAdaBoost(), doRealAdaBoost(), numBaseLearners, numData, sgpp::base::DataVector::setAll(), and sgpp::base::DataMatrix::setAll().
Referenced by classif().
void sgpp::datadriven::AlgorithmAdaBoostBase::getAccuracy | ( | base::DataMatrix & | testData, |
base::DataVector & | testDataClass, | ||
double * | accuracy_train, | ||
double * | accuracy_test | ||
) |
Performs an accuracy evaluation for the testing dataset.
testData | reference to the testing dataset |
testDataClass | reference to the class of testing dataset |
accuracy_train | reference to the accuracy for the training dataset |
accuracy_test | reference to the accuracy for the testing dataset |
References classes, classif(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataVector::getSize(), python.statsfileInfo::i, numBaseLearners, and numData.
void sgpp::datadriven::AlgorithmAdaBoostBase::getAccuracyBL | ( | base::DataMatrix & | testData, |
base::DataVector & | testDataClass, | ||
base::DataMatrix & | algorithmValueTrain, | ||
base::DataMatrix & | algorithmValueTest, | ||
double * | accuracy_train, | ||
double * | accuracy_test, | ||
size_t | yourBaseLearner | ||
) |
Performs an accuracy evaluation for the testing dataset with a specified number of base learner.
testData | reference to the testing dataset |
testDataClass | reference to the class of testing dataset |
algorithmValueTrain | the matrix reference to the real value of training dataset got from the algorithm with diff base learners |
algorithmValueTest | the matrix reference to the real value of testing dataset got from the algorithm with diff base learners |
accuracy_train | reference to the accuracy for the training dataset |
accuracy_test | reference to the accuracy for the testing dataset |
yourBaseLearner | the number of base learner specified |
References classes, sgpp::base::DataVector::get(), sgpp::base::DataMatrix::get(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataVector::getSize(), hValue(), python.statsfileInfo::i, and numData.
size_t sgpp::datadriven::AlgorithmAdaBoostBase::getActualBL | ( | ) |
Get the actual base learners after doing adaboosting.
References actualBaseLearners.
size_t sgpp::datadriven::AlgorithmAdaBoostBase::getMaxGridPoint | ( | size_t | baseLearner | ) |
Get the max GridPoint ever used in adaboosting.
baseLearner | number of baselearner |
References sgpp::base::DataVector::get(), and maxGridPoint.
size_t sgpp::datadriven::AlgorithmAdaBoostBase::getMeanGridPoint | ( | size_t | baseLearner | ) |
Get the mean GridPoint ever used in adaboosting.
baseLearner | number of baselearner |
References sgpp::base::DataVector::get(), python.datasetAnalysis::mean, and sumGridPoint.
void sgpp::datadriven::AlgorithmAdaBoostBase::getROC | ( | base::DataMatrix & | validationData, |
base::DataVector & | validationDataClass, | ||
double * | acc, | ||
double * | sensitivity, | ||
double * | specificity, | ||
double * | precision, | ||
double * | recall, | ||
double * | fOneScore | ||
) |
Performs an evaluation to get ROC related parameter.
validationData | reference to the validation dataset |
validationDataClass | reference to the class of validation dataset |
acc | reference to the accuracy for the validation dataset |
sensitivity | reference to the sensitivity for the validation dataset |
specificity | reference to the specificity for the validation dataset |
precision | reference to the precision for the validation dataset |
recall | reference to the recall for the validation dataset |
fOneScore | reference to the specificity for the validation dataset |
References classif(), sgpp::base::DataVector::get(), sgpp::base::DataMatrix::getNrows(), sgpp::base::DataVector::getSize(), python.statsfileInfo::i, labelOne, labelTwo, numBaseLearners, and numData.
size_t sgpp::datadriven::AlgorithmAdaBoostBase::getSumGridPoint | ( | size_t | baseLearner | ) |
Get the sum GridPoint ever used in adaboosting.
baseLearner | number of baselearner |
References sgpp::base::DataVector::get(), and sumGridPoint.
double sgpp::datadriven::AlgorithmAdaBoostBase::hValue | ( | double | realValue | ) |
Performs a hypothesis classifier.
realValue | real value of function |
References labelOne, labelTwo, and threshold.
Referenced by classif(), doDiscreteAdaBoost(), and getAccuracyBL().
|
protected |
Actual base learners number for Adaboosting.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), and getActualBL().
|
protected |
Set the boost mode (1: Discrete Adaboost, 2: Real Adaboost)
Referenced by AlgorithmAdaBoostBase(), and eval().
|
protected |
Pointer to the class(real value in regression) of the data vector.
Referenced by AlgorithmAdaBoostBase(), sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), getAccuracy(), and getAccuracyBL().
|
protected |
Pointer to the data matrix.
Referenced by AlgorithmAdaBoostBase(), sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().
|
protected |
DataSet Dimension.
Referenced by AlgorithmAdaBoostBase(), python.uq.dists.KDEDist.KDEDist::cov(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), python.uq.dists.NatafDist.NatafDist::getDim(), python.uq.dists.KDEDist.KDEDist::rvs(), and python.uq.dists.NatafDist.NatafDist::rvs().
|
protected |
Parameter for CG solver(during the refinement)
Referenced by AlgorithmAdaBoostBase(), and sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver().
|
protected |
Parameter for CG solver(for the last refinement)
Referenced by AlgorithmAdaBoostBase(), and sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver().
|
protected |
the grid
Referenced by AlgorithmAdaBoostBase(), sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), python.uq.learner.Interpolant.Interpolant::doLearningIteration(), doRealAdaBoost(), doRefinement(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().
|
protected |
Number of grid points.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().
|
protected |
Parameter for CG solver(during the refinement)
Referenced by AlgorithmAdaBoostBase(), and sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver().
|
protected |
Parameter for CG solver(for the last refinement)
Referenced by AlgorithmAdaBoostBase(), and sgpp::datadriven::AlgorithmAdaBoostIdentity::alphaSolver().
|
protected |
One label of the DataSet.
Referenced by AlgorithmAdaBoostBase(), getROC(), and hValue().
|
protected |
Another label of the DataSet.
Referenced by AlgorithmAdaBoostBase(), getROC(), and hValue().
|
protected |
the lambda, the regularisation parameter
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), and doRefinement().
|
protected |
Log of the Max lambda in searching for optimal lambda.
Referenced by AlgorithmAdaBoostBase(), and doDiscreteAdaBoost().
|
protected |
Number of iteration in searching for optimal lambda.
Referenced by AlgorithmAdaBoostBase(), and doDiscreteAdaBoost().
|
protected |
Interval size with logrange used in searching optimal lambda.
Referenced by AlgorithmAdaBoostBase(), and doDiscreteAdaBoost().
|
protected |
grid level
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().
|
protected |
Number of the maximum grid points used in the algorithm.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), doRefinement(), and getMaxGridPoint().
|
protected |
Number of base learner for Adaboosting.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), eval(), getAccuracy(), and getROC().
|
protected |
the size of the grid
Referenced by AlgorithmAdaBoostBase(), classif(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), eval(), getAccuracy(), getAccuracyBL(), and getROC().
|
protected |
Number of Grid points to refine.
Referenced by AlgorithmAdaBoostBase(), and doRefinement().
|
protected |
Percentage of Grid points to refine(between 0 and 1)
Referenced by AlgorithmAdaBoostBase(), and doRefinement().
|
protected |
Judgement of grid refine.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().
|
protected |
Select the refine mode(1:use grid number, 2: use grid number percentage)
Referenced by AlgorithmAdaBoostBase(), and doRefinement().
|
protected |
Number of refinement with a certain percentage of Grid points.
Referenced by AlgorithmAdaBoostBase(), and doRefinement().
|
protected |
Number of the sum grid points used in the algorithm.
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), doRealAdaBoost(), doRefinement(), getMeanGridPoint(), and getSumGridPoint().
|
protected |
Threshold to predict class.
Referenced by AlgorithmAdaBoostBase(), and hValue().
|
protected |
type of grid possible value are 1, 2 or 3(1 = Linear Grid, 2 = LinearL0Boundary Grid, 3 = ModLinear Grid);
Referenced by AlgorithmAdaBoostBase(), doAdaBoostR2(), doAdaBoostRT(), doDiscreteAdaBoost(), and doRealAdaBoost().