![]() |
SG++-Doxygen-Documentation
|
Functions | |
| def | computeErrors (jgrid, jalpha, grid1, alpha1, grid2, alpha2, n=200) |
| def | dehierarchizeOnNewGrid (gridResult, grid, alpha) |
| def | discretizeProduct (grid1, alpha1, grid2, alpha2) |
| def | interpolateProduct (grid1, alpha1, grid2, alpha2, grid_result) |
| def | refine (jgrid, jalpha) |
Variables | |
| list | refinable = [] |
| def python.uq.operations.discretizeProduct.computeErrors | ( | jgrid, | |
| jalpha, | |||
| grid1, | |||
| alpha1, | |||
| grid2, | |||
| alpha2, | |||
n = 200 |
|||
| ) |
Compute some errors to estimate the quality of the interpolation. @param jgrid: Grid, new discretization @param jalpha: DataVector, new surpluses @param grid1: Grid, old discretization @param alpha1: DataVector, old surpluses @param grid2: Grid, old discretization @param alpha2: DataVector, old surpluses @return: tuple(<float>, <float>), maxdrift, l2norm
References python.uq.operations.sparse_grid.evalSGFunctionMulti().
| def python.uq.operations.discretizeProduct.dehierarchizeOnNewGrid | ( | gridResult, | |
| grid, | |||
| alpha | |||
| ) |
| def python.uq.operations.discretizeProduct.discretizeProduct | ( | grid1, | |
| alpha1, | |||
| grid2, | |||
| alpha2 | |||
| ) |
Discretizes the product of two sparse grid functions:
h(x) := f(x) * g(x)
on a full grid with piecewise polynomial basis. Therefore
a maximum number of grid points 10^6 is allowed.
@param grid1: Grid, grid of f
@param alpha1: DataVector, hierarchical coefficients of f
@param grid2: Grid, grid of g
@param alpha2: DataVector, hierarchical coefficients of g
References python.uq.operations.sparse_grid.getDegree(), and python.uq.operations.discretizeProduct.interpolateProduct().
| def python.uq.operations.discretizeProduct.interpolateProduct | ( | grid1, | |
| alpha1, | |||
| grid2, | |||
| alpha2, | |||
| grid_result | |||
| ) |
| def python.uq.operations.discretizeProduct.refine | ( | jgrid, | |
| jalpha | |||
| ) |
References python.uq.operations.sparse_grid.isRefineable().
Referenced by sgpp::datadriven::AlgorithmAdaBoostBase.AlgorithmAdaBoostBase(), python.uq.refinement.RefinementManager.RefinementManager.candidates(), python.classifier.doTest(), sgpp::datadriven::DBMatOnlineDEOrthoAdapt.getRefinedPointsPointer(), python.classifier.performFold(), python.classifier.performFoldNew(), python.classifier.performFoldRegression(), python.learner.Classifier.Classifier.refineGrid(), python.learner.Regressor.Regressor.refineGrid(), python.uq.learner.Regressor.Regressor.refineGrid(), and python.classifier.run().
| list python.uq.operations.discretizeProduct.refinable = [] |
Referenced by sgpp::optimization::IterativeGridGeneratorSOO.generate().