#include <OperationDensitySampling1DLinear.hpp>
◆ OperationDensitySampling1DLinear()
sgpp::datadriven::OperationDensitySampling1DLinear::OperationDensitySampling1DLinear |
( |
base::Grid * |
grid | ) |
|
|
explicit |
WARNING: the grid must be a 1D grid!
References grid.
◆ ~OperationDensitySampling1DLinear()
sgpp::datadriven::OperationDensitySampling1DLinear::~OperationDensitySampling1DLinear |
( |
| ) |
|
|
virtual |
◆ doSampling1D()
void sgpp::datadriven::OperationDensitySampling1DLinear::doSampling1D |
( |
base::DataVector * |
alpha, |
|
|
size_t |
num_samples, |
|
|
base::DataVector *& |
samples, |
|
|
unsigned int * |
seedp |
|
) |
| |
|
virtual |
◆ grid
base::Grid* sgpp::datadriven::OperationDensitySampling1DLinear::grid |
|
protected |
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), doSampling1D(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), OperationDensitySampling1DLinear(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().
The documentation for this class was generated from the following files: