SG++-Doxygen-Documentation
|
Sampling with rejection sampling method. More...
#include <OperationDensityRejectionSamplingLinear.hpp>
Public Member Functions | |
void | doSampling (base::DataVector *alpha, base::DataMatrix *&samples, size_t num_samples, size_t trial_max) |
Rejection sampling. More... | |
OperationDensityRejectionSamplingLinear (base::Grid *grid) | |
virtual | ~OperationDensityRejectionSamplingLinear () |
Public Member Functions inherited from sgpp::datadriven::OperationDensityRejectionSampling | |
OperationDensityRejectionSampling () | |
virtual | ~OperationDensityRejectionSampling () |
Protected Attributes | |
base::Grid * | grid |
Sampling with rejection sampling method.
|
inlineexplicit |
|
inlinevirtual |
References alpha, doSampling(), and parabolasimple::samples.
|
virtual |
Rejection sampling.
alpha | Coefficient vector for current grid |
samples | Output DataMatrix (rows: # of samples, columns: # of dims) |
num_samples | # of samples to draw |
trial_max | maximum # of trials for drawing a sample (exceeding will cause operation to stop) |
Implements sgpp::datadriven::OperationDensityRejectionSampling.
References sgpp::op_factory::createOperationEval(), sgpp::op_factory::createOperationMultipleEval(), sgpp::base::Grid::getDimension(), grid, python.statsfileInfo::i, python.utils.statsfile2gnuplot::j, sgpp::base::DataVector::max(), sgpp::base::OperationMultipleEval::mult(), friedman::p, sgpp::base::DataMatrix::set(), sgpp::base::DataMatrix::setRow(), and analyse_erg::tmp.
Referenced by ~OperationDensityRejectionSamplingLinear().
|
protected |
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), doSampling(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().