SG++-Doxygen-Documentation
pca_normalize_dataset.py File Reference

Namespaces

 python.utils.pca_normalize_dataset
 

Functions

def python.utils.pca_normalize_dataset.clean_data (data)
 leave only the data points with coordinated greater than zero is convinient for some problems, i.e. More...
 
def python.utils.pca_normalize_dataset.create_logger ()
 
def python.utils.pca_normalize_dataset.norm (mat)
 normalization on [0,1] interval More...
 
def python.utils.pca_normalize_dataset.remove_outliers (mat, koef, target=None)
 remove outliers, where the points deviate on more than koef times standard deviation from the mean More...
 

Variables

 python.utils.pca_normalize_dataset.action
 
 python.utils.pca_normalize_dataset.args
 
 python.utils.pca_normalize_dataset.C = cov(interest_data)
 
 python.utils.pca_normalize_dataset.data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',')
 
 python.utils.pca_normalize_dataset.default
 
 python.utils.pca_normalize_dataset.delimiter
 
 python.utils.pca_normalize_dataset.dest
 
 python.utils.pca_normalize_dataset.filename = options.file_in
 
 python.utils.pca_normalize_dataset.help
 
 python.utils.pca_normalize_dataset.interest_data = data - means
 
 python.utils.pca_normalize_dataset.interest_data_transformed = dot(invV, interest_data).T
 
 python.utils.pca_normalize_dataset.invV = inv(V)
 
def python.utils.pca_normalize_dataset.logger = create_logger()
 
 python.utils.pca_normalize_dataset.means = mean(data,axis=0)
 
 python.utils.pca_normalize_dataset.options
 
 python.utils.pca_normalize_dataset.parser = optparse.OptionParser()
 
 python.utils.pca_normalize_dataset.target = data[:, options.target_column]
 
 python.utils.pca_normalize_dataset.type
 
 python.utils.pca_normalize_dataset.u
 
 python.utils.pca_normalize_dataset.V