![]() |
SG++-Doxygen-Documentation
|
#include <limits>#include <random>#include <string>#include "sgpp/base/grid/generation/functors/SurplusRefinementFunctor.hpp"#include "sgpp/base/opencl/OCLOperationConfiguration.hpp"#include "sgpp/base/operation/BaseOpFactory.hpp"#include "sgpp/base/operation/hash/OperationMultipleEval.hpp"#include "sgpp/datadriven/DatadrivenOpFactory.hpp"#include "sgpp/datadriven/tools/ARFFTools.hpp"#include "sgpp/globaldef.hpp"Functions | |
| void | doAllRefinements (const sgpp::base::AdaptivityConfiguration &adaptConfig, sgpp::base::Grid &grid, sgpp::base::GridGenerator &gridGen, std::mt19937 mt, std::uniform_real_distribution< double > &dist) |
| int | main (int argc, char **argv) |
| void doAllRefinements | ( | const sgpp::base::AdaptivityConfiguration & | adaptConfig, |
| sgpp::base::Grid & | grid, | ||
| sgpp::base::GridGenerator & | gridGen, | ||
| std::mt19937 | mt, | ||
| std::uniform_real_distribution< double > & | dist | ||
| ) |
| int main | ( | int | argc, |
| char ** | argv | ||
| ) |
References adaptConfig, sgpp::base::Grid::createLinearGrid(), sgpp::base::Grid::createModLinearGrid(), sgpp::op_factory::createOperationMultipleEval(), dataset, chess::dim, doAllRefinements(), fileName, sgpp::datadriven::Dataset::getData(), sgpp::datadriven::Dataset::getDimension(), sgpp::base::OperationMultipleEval::getDuration(), sgpp::base::Grid::getGenerator(), sgpp::datadriven::Dataset::getNumberInstances(), sgpp::base::Grid::getStorage(), grid(), python.utils.sg_projections::gridStorage, python.statsfileInfo::i, level, sgpp::base::AdaptivityConfiguration::maxLevelType_, sgpp::base::OperationMultipleEval::multTranspose(), sgpp::base::AdaptivityConfiguration::noPoints_, sgpp::base::AdaptivityConfiguration::numRefinements_, sgpp::datadriven::OCLUNIFIED, sgpp::base::AdaptivityConfiguration::percent_, sgpp::base::OperationMultipleEval::prepare(), sgpp::datadriven::ARFFTools::readARFFFromFile(), sgpp::base::GridGenerator::regular(), sgpp::datadriven::STREAMING, sgpp::base::AdaptivityConfiguration::threshold_, and trainingData.