SG++-Doxygen-Documentation
|
Base class for models operating on a single grid (i.e. More...
#include <ModelFittingBaseSingleGrid.hpp>
Public Member Functions | |
Grid & | getGrid () |
Get the underlying grid object for the current model. More... | |
DataVector & | getSurpluses () |
Get the surpluses of the current grid. More... | |
ModelFittingBaseSingleGrid () | |
Default constructor. More... | |
ModelFittingBaseSingleGrid (const ModelFittingBaseSingleGrid &rhs)=delete | |
Copy constructor - we cannot deep copy all member variables yet. More... | |
ModelFittingBaseSingleGrid (ModelFittingBaseSingleGrid &&rhs)=default | |
Move constructor. More... | |
ModelFittingBaseSingleGrid & | operator= (const ModelFittingBaseSingleGrid &rhs)=delete |
Copy assign operator - we cannot deep copy all member variables yet. More... | |
ModelFittingBaseSingleGrid & | operator= (ModelFittingBaseSingleGrid &&rhs)=default |
Move assign operator. More... | |
virtual | ~ModelFittingBaseSingleGrid ()=default |
virtual destructor. More... | |
Public Member Functions inherited from sgpp::datadriven::ModelFittingBase | |
virtual double | evaluate (const DataVector &sample)=0 |
Evaluate the fitted model at a single data point. More... | |
virtual void | evaluate (DataMatrix &samples, DataVector &results)=0 |
Evaluate the fitted model on a set of data points. More... | |
virtual void | fit (Dataset &dataset)=0 |
Polymorphic clone pattern. More... | |
const FitterConfiguration & | getFitterConfiguration () const |
Get the configuration of the fitter object. More... | |
ModelFittingBase () | |
Default constructor. More... | |
ModelFittingBase (const ModelFittingBase &rhs)=delete | |
Copy constructor - we cannot deep copy all member variables yet. More... | |
ModelFittingBase (ModelFittingBase &&rhs)=default | |
Move constructor. More... | |
ModelFittingBase & | operator= (const ModelFittingBase &rhs)=delete |
Copy assign operator - we cannot deep copy all member variables yet. More... | |
ModelFittingBase & | operator= (ModelFittingBase &&rhs)=default |
Move assign operator. More... | |
virtual bool | refine ()=0 |
Improve accuracy of the model on the given training data by adaptive refinement of the grid. More... | |
virtual void | reset ()=0 |
Resets the state of the entire model. More... | |
virtual void | update (Dataset &dataset)=0 |
Train the grid of an existing model with new samples. More... | |
virtual | ~ModelFittingBase ()=default |
virtual destructor. More... | |
Protected Attributes | |
DataVector | alpha |
hierarchical surpluses of the grid. More... | |
std::unique_ptr< Grid > | grid |
the sparse grid that approximates the data. More... | |
Protected Attributes inherited from sgpp::datadriven::ModelFittingBase | |
std::unique_ptr< FitterConfiguration > | config |
Configuration object for the fitter. More... | |
Dataset * | dataset |
Pointer to sgpp::datadriven::Dataset. More... | |
std::unique_ptr< SLESolver > | solver |
Solver for the learning problem. More... | |
Additional Inherited Members | |
Public Attributes inherited from sgpp::datadriven::ModelFittingBase | |
bool | verboseSolver |
Whether the Solver produces output or not. More... | |
Protected Member Functions inherited from sgpp::datadriven::ModelFittingBase | |
Grid * | buildGrid (const RegularGridConfiguration &gridConfig) const |
Factory member function that generates a grid from configuration. More... | |
SLESolver * | buildSolver (const SLESolverConfiguration &config) const |
Factory member function to build the solver for the least squares regression problem according to the config. More... | |
void | reconfigureSolver (SLESolver &solver, const SLESolverConfiguration &config) const |
Configure solver based on the desired configuration. More... | |
Base class for models operating on a single grid (i.e.
Least-Squares-Regression and density estimation
sgpp::datadriven::ModelFittingBaseSingleGrid::ModelFittingBaseSingleGrid | ( | ) |
Default constructor.
References alpha.
|
delete |
Copy constructor - we cannot deep copy all member variables yet.
rhs | const reference to the scorer object to copy from. |
|
default |
Move constructor.
rhs | R-value reference to a scorer object to moved from. |
|
virtualdefault |
virtual destructor.
Grid & sgpp::datadriven::ModelFittingBaseSingleGrid::getGrid | ( | ) |
DataVector & sgpp::datadriven::ModelFittingBaseSingleGrid::getSurpluses | ( | ) |
|
delete |
Copy assign operator - we cannot deep copy all member variables yet.
rhs | const reference to the scorer object to copy from. |
|
default |
Move assign operator.
rhs | R-value reference to an a scorer object to move from. |
|
protected |
hierarchical surpluses of the grid.
Referenced by sgpp::datadriven::ModelFittingLeastSquares::evaluate(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::evaluate(), sgpp::datadriven::ModelFittingDensityEstimationCG::evaluate(), sgpp::datadriven::ModelFittingLeastSquares::fit(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::fit(), sgpp::datadriven::ModelFittingDensityEstimationCG::fit(), sgpp::datadriven::ModelFittingDensityEstimation::getRefinementFunctor(), getSurpluses(), ModelFittingBaseSingleGrid(), sgpp::datadriven::ModelFittingLeastSquares::refine(), sgpp::datadriven::ModelFittingDensityEstimationCG::refine(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::refine(), python.learner.Classifier.Classifier::refineGrid(), sgpp::datadriven::ModelFittingLeastSquares::reset(), sgpp::datadriven::ModelFittingLeastSquares::update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::update(), and sgpp::datadriven::ModelFittingDensityEstimationCG::update().
|
protected |
the sparse grid that approximates the data.
Referenced by python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), sgpp::datadriven::ModelFittingLeastSquares::evaluate(), sgpp::datadriven::ModelFittingDensityEstimationCG::evaluate(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::evaluate(), sgpp::datadriven::ModelFittingLeastSquares::fit(), sgpp::datadriven::ModelFittingDensityEstimationCG::fit(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::fit(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::isRefinable(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), sgpp::datadriven::ModelFittingLeastSquares::refine(), sgpp::datadriven::ModelFittingDensityEstimation::refine(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::refine(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::reset(), sgpp::datadriven::ModelFittingLeastSquares::update(), sgpp::datadriven::ModelFittingDensityEstimationCG::update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff::update(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().