SG++-Doxygen-Documentation
|
This class is a helper class to configure some adaptive refinement methods. More...
#include <AdaptiveRefinementStrategy.hpp>
Public Types | |
typedef std::function< double(std::vector< double > const &, size_t)> | priority_function |
Public Member Functions | |
AdaptiveRefinementStrategy (priority_function func) | |
double | computePriority (std::vector< double > const &predecessorNorms, size_t numNewPoints) |
Static Public Member Functions | |
static AdaptiveRefinementStrategy | arithmeticMeanStrategy () |
static AdaptiveRefinementStrategy | geometricMeanStrategy () |
static AdaptiveRefinementStrategy | maxStrategy () |
static AdaptiveRefinementStrategy | minStrategy () |
This class is a helper class to configure some adaptive refinement methods.
More precisely, it implements some kind of averaging scores of predecessor levels. Standard averaging techniques are already implemented in static methods.
typedef std::function<double(std::vector<double> const &, size_t)> sgpp::combigrid::AdaptiveRefinementStrategy::priority_function |
|
explicit |
Referenced by arithmeticMeanStrategy(), geometricMeanStrategy(), maxStrategy(), and minStrategy().
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.
double sgpp::combigrid::AdaptiveRefinementStrategy::computePriority | ( | std::vector< double > const & | predecessorNorms, |
size_t | numNewPoints | ||
) |
|
static |
References AdaptiveRefinementStrategy(), python.statsfileInfo::i, and sgpp::combigrid::pow().
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.