![]() |
SG++-Doxygen-Documentation
|
This class is a helper class to configure some adaptive refinement methods. More...
#include <AdaptiveRefinementStrategy.hpp>
Public Types | |
| typedef std::function< double(std::vector< double > const &, size_t)> | priority_function |
Public Member Functions | |
| AdaptiveRefinementStrategy (priority_function func) | |
| double | computePriority (std::vector< double > const &predecessorNorms, size_t numNewPoints) |
Static Public Member Functions | |
| static AdaptiveRefinementStrategy | arithmeticMeanStrategy () |
| static AdaptiveRefinementStrategy | geometricMeanStrategy () |
| static AdaptiveRefinementStrategy | maxStrategy () |
| static AdaptiveRefinementStrategy | minStrategy () |
This class is a helper class to configure some adaptive refinement methods.
More precisely, it implements some kind of averaging scores of predecessor levels. Standard averaging techniques are already implemented in static methods.
| typedef std::function<double(std::vector<double> const &, size_t)> sgpp::combigrid::AdaptiveRefinementStrategy::priority_function |
|
explicit |
Referenced by arithmeticMeanStrategy(), geometricMeanStrategy(), maxStrategy(), and minStrategy().
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.
| double sgpp::combigrid::AdaptiveRefinementStrategy::computePriority | ( | std::vector< double > const & | predecessorNorms, |
| size_t | numNewPoints | ||
| ) |
|
static |
References AdaptiveRefinementStrategy(), python.statsfileInfo::i, and sgpp::combigrid::pow().
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.
|
static |
References AdaptiveRefinementStrategy(), and python.statsfileInfo::i.