![]() |
SG++-Doxygen-Documentation
|
Abstract class for providing functionality for accomplishment of learning with cross-validation by generating a set of training data/validation data pairs. More...
Public Member Functions | |
| def | __init__ (self, dataset, level=1) |
| Constructor. More... | |
| def | __iter__ (self) |
| Implementation of iterator method iter() iterates through subsets. More... | |
| def | __next__ (self) |
| Implementation of iterator method next() More... | |
| def | createFoldsets (self, dataContainer, validationIndeces) |
| Create fold new data set Brings points given by validationIndeces together as test subset and the rest of points as train subset. More... | |
Public Attributes | |
| dataFold | |
| List of partitioned data sets. More... | |
| dataset | |
| Dataset. More... | |
| level | |
| Folding level. More... | |
| seq | |
| Sequence of indices of points from data set. More... | |
| size | |
| Size of dataset. More... | |
| window | |
| Number of points in one subset. More... | |
Abstract class for providing functionality for accomplishment of learning with cross-validation by generating a set of training data/validation data pairs.
| def python.learner.folding.FoldingPolicy.FoldingPolicy.__init__ | ( | self, | |
| dataset, | |||
level = 1 |
|||
| ) |
Constructor.
| dataset | DataContainer with data set |
| level | Integer folding level, default value: 1 |
| def python.learner.folding.FoldingPolicy.FoldingPolicy.__iter__ | ( | self | ) |
Implementation of iterator method iter() iterates through subsets.
| def python.learner.folding.FoldingPolicy.FoldingPolicy.__next__ | ( | self | ) |
Implementation of iterator method next()
References python.learner.folding.FoldingPolicy.FoldingPolicy.dataFold, sgpp::combigrid::TensorGrid.level, sgpp::combigrid::ExponentialChebyshevPermutationIterator.level, sgpp::combigrid::ExponentialNoBoundaryPermutationIterator.level, sgpp::combigrid::ExponentialLevelorderPermutationIterator.level, python.learner.folding.FoldingPolicy.FoldingPolicy.level, sgpp::combigrid::AbstractEvaluator< V >.level, sgpp::combigrid::QueueEntry.level, python.learner.folding.FilesFoldingPolicy.FilesFoldingPolicy.level, and sgpp::base::HashGridPoint.level.
| def python.learner.folding.FoldingPolicy.FoldingPolicy.createFoldsets | ( | self, | |
| dataContainer, | |||
| validationIndeces | |||
| ) |
Create fold new data set Brings points given by validationIndeces together as test subset and the rest of points as train subset.
| dataContainer | DataContainer with points |
| validationIndeces | list of indices for validation subset |
References python.learner.folding.FoldingPolicy.FoldingPolicy.seq, and sgpp::base::AbstractRefinement_refinement_key.seq.
| python.learner.folding.FoldingPolicy.FoldingPolicy.dataFold |
List of partitioned data sets.
Referenced by python.learner.folding.FoldingPolicy.FoldingPolicy.__next__().
| python.learner.folding.FoldingPolicy.FoldingPolicy.dataset |
Dataset.
| python.learner.folding.FoldingPolicy.FoldingPolicy.level |
Folding level.
Referenced by python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.__eq__(), python.learner.folding.FoldingPolicy.FoldingPolicy.__next__(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.contains(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.containsDimx(), python.uq.learner.builder.GridDescriptor.GridDescriptor.createGrid(), python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.estimate(), python.uq.learner.builder.GridDescriptor.GridDescriptor.fromGrid(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.getLevelIndex(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.getMaxLevel(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.overlap(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.overlapDimx(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.transformToReferenceGrid(), python.uq.manager.ASGCStatistics.ASGCStatistics.updateResults(), python.uq.learner.SimulationLearner.SimulationLearner.updateResults(), python.uq.learner.builder.GridDescriptor.GridDescriptor.withLevel(), and python.uq.learner.builder.RegressorSpecificationDescriptor.FoldingDescriptor.withLevel().
| python.learner.folding.FoldingPolicy.FoldingPolicy.seq |
Sequence of indices of points from data set.
Referenced by python.learner.folding.FoldingPolicy.FoldingPolicy.createFoldsets().
| python.learner.folding.FoldingPolicy.FoldingPolicy.size |
Size of dataset.
| python.learner.folding.FoldingPolicy.FoldingPolicy.window |
Number of points in one subset.