Loading [MathJax]/extensions/TeX/AMSmath.js
SG++-Doxygen-Documentation
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
python.painlesscg Namespace Reference

Functions

def ApplyA (B, C, alpha, result, x, l)
 
def BiCGStab (b, alpha, imax, epsilon, ApplyMatrix, verbose=True)
 
def cg (y, alpha, grid, x, imax, epsilon, l, verbose=True)
 
def cg_new (b, alpha, imax, epsilon, ApplyMatrix, reuse=False, verbose=True, max_threshold=None)
 Conjugated Gradient method for sparse grids, solving A.alpha=b. More...
 
def sd (y, alpha, grid, x, imax, epsilon, l)
 

Function Documentation

◆ ApplyA()

def python.painlesscg.ApplyA (   B,
  C,
  alpha,
  result,
  x,
  l 
)

◆ BiCGStab()

def python.painlesscg.BiCGStab (   b,
  alpha,
  imax,
  epsilon,
  ApplyMatrix,
  verbose = True 
)

◆ cg()

def python.painlesscg.cg (   y,
  alpha,
  grid,
  x,
  imax,
  epsilon,
  l,
  verbose = True 
)

◆ cg_new()

def python.painlesscg.cg_new (   b,
  alpha,
  imax,
  epsilon,
  ApplyMatrix,
  reuse = False,
  verbose = True,
  max_threshold = None 
)

Conjugated Gradient method for sparse grids, solving A.alpha=b.

The resulting vector is stored in alpha.

Parameters
bRHS of equation
alphavector of unknowns
imaxmax. number of iterations (abort, if reached)
epsilonaccuracy requirements (reduce initial norm of residuum |delta_0| below epsilon*|delta_0|)
ApplyMatrixprocedure that applies A to a vector
reusestarting vector is 0 by default. If true, use current values in alpha
verboseverbose output (default False)
max_thresholdmaximal threshold
Returns
tuple (number of iterations, final norm of residuum)

Referenced by python.classifier.doTest(), python.classifier.performFold(), python.classifier.performFoldNew(), python.classifier.performFoldRegression(), and python.classifier.run().

◆ sd()

def python.painlesscg.sd (   y,
  alpha,
  grid,
  x,
  imax,
  epsilon,
  l 
)