SG++-Doxygen-Documentation
|
Functions | |
def | ApplyA (B, C, alpha, result, x, l) |
def | BiCGStab (b, alpha, imax, epsilon, ApplyMatrix, verbose=True) |
def | cg (y, alpha, grid, x, imax, epsilon, l, verbose=True) |
def | cg_new (b, alpha, imax, epsilon, ApplyMatrix, reuse=False, verbose=True, max_threshold=None) |
Conjugated Gradient method for sparse grids, solving A.alpha=b. More... | |
def | sd (y, alpha, grid, x, imax, epsilon, l) |
def python.painlesscg.ApplyA | ( | B, | |
C, | |||
alpha, | |||
result, | |||
x, | |||
l | |||
) |
Referenced by python.painlesscg.cg(), and python.painlesscg.sd().
def python.painlesscg.BiCGStab | ( | b, | |
alpha, | |||
imax, | |||
epsilon, | |||
ApplyMatrix, | |||
verbose = True |
|||
) |
Referenced by sgpp::datadriven::ModelFittingBase.buildSolver().
def python.painlesscg.cg | ( | y, | |
alpha, | |||
grid, | |||
x, | |||
imax, | |||
epsilon, | |||
l, | |||
verbose = True |
|||
) |
References python.painlesscg.ApplyA().
def python.painlesscg.cg_new | ( | b, | |
alpha, | |||
imax, | |||
epsilon, | |||
ApplyMatrix, | |||
reuse = False , |
|||
verbose = True , |
|||
max_threshold = None |
|||
) |
Conjugated Gradient method for sparse grids, solving A.alpha=b.
The resulting vector is stored in alpha.
b | RHS of equation |
alpha | vector of unknowns |
imax | max. number of iterations (abort, if reached) |
epsilon | accuracy requirements (reduce initial norm of residuum |delta_0| below epsilon*|delta_0|) |
ApplyMatrix | procedure that applies A to a vector |
reuse | starting vector is 0 by default. If true, use current values in alpha |
verbose | verbose output (default False) |
max_threshold | maximal threshold |
Referenced by python.classifier.doTest(), python.classifier.performFold(), python.classifier.performFoldNew(), python.classifier.performFoldRegression(), and python.classifier.run().
def python.painlesscg.sd | ( | y, | |
alpha, | |||
grid, | |||
x, | |||
imax, | |||
epsilon, | |||
l | |||
) |