SG++-Doxygen-Documentation
|
Functions | |
def | createConvergenceFunc (approx_func, original_func) |
def | createConvPlotFunc (approx, orig, dim) |
def | gibbs_function (alpha, x) |
def | inputwrapper (x) |
def | integral (dim, f, a=0.0, b=1.0, points=10000) |
def | makePlots (dim, f, title="", filename="test") |
def | multiDim_function (alpha, x) |
def | norm (x) |
def | plot_gibbs () |
def | plot_multiDim () |
def | plotConvergence (approx, orig, a=0, b=10) |
def | plotConvergenceMulti (approxs, orig, names, shows, title, dim, a=0, b=10, logx=False, logy=False, plot=True, filename=None) |
def | test () |
def | test_func (x) |
def | test_func_sin (x) |
def python.convergence.createConvergenceFunc | ( | approx_func, | |
original_func | |||
) |
References python.convergence.inputwrapper().
Referenced by python.convergence.createConvPlotFunc(), and python.convergence.plot_multiDim().
def python.convergence.createConvPlotFunc | ( | approx, | |
orig, | |||
dim | |||
) |
def python.convergence.gibbs_function | ( | alpha, | |
x | |||
) |
Referenced by python.convergence.plot_gibbs().
def python.convergence.inputwrapper | ( | x | ) |
References create_dataset.type.
Referenced by python.convergence.createConvergenceFunc(), and python.convergence.createConvPlotFunc().
def python.convergence.integral | ( | dim, | |
f, | |||
a = 0.0 , |
|||
b = 1.0 , |
|||
points = 10000 |
|||
) |
References python.statsfileInfo.f.
Referenced by python.convergence.createConvPlotFunc(), and sgpp::datadriven::PiecewiseConstantRegression::Node.integrate().
def python.convergence.makePlots | ( | dim, | |
f, | |||
title = "" , |
|||
filename = "test" |
|||
) |
# exp approx approx = [] expCC = CombigridOperation.createExpClenshawCurtisPolynomialInterpolation(dim, multiFunc(f)) expCCF = lambda x,y : expCC.evaluate(x, y) expUni = CombigridOperation.createExpUniformPolynomialInterpolation(dim, multiFunc(f)) expUniF = lambda x,y : expUni.evaluate(x, y) expLeja = CombigridOperation.createExpLejaPolynomialInterpolation(dim, multiFunc(f)) expLejaF = lambda x,y : expLeja.evaluate(x, y) approx.append(expCCF) approx.append(expUniF) approx.append(expLejaF) names = ["exp ClenCurt", "exp Uniform", "exp Leja"] shows = ['or', 'ob', 'og']
References python.convergence.plotConvergenceMulti().
Referenced by python.convergence.plot_gibbs().
def python.convergence.multiDim_function | ( | alpha, | |
x | |||
) |
Referenced by python.convergence.plot_multiDim().
def python.convergence.norm | ( | x | ) |
def python.convergence.plot_gibbs | ( | ) |
References python.convergence.gibbs_function(), and python.convergence.makePlots().
def python.convergence.plot_multiDim | ( | ) |
def python.convergence.plotConvergence | ( | approx, | |
orig, | |||
a = 0 , |
|||
b = 10 |
|||
) |
def python.convergence.plotConvergenceMulti | ( | approxs, | |
orig, | |||
names, | |||
shows, | |||
title, | |||
dim, | |||
a = 0 , |
|||
b = 10 , |
|||
logx = False , |
|||
logy = False , |
|||
plot = True , |
|||
filename = None |
|||
) |
References python.convergence.createConvPlotFunc().
Referenced by python.convergence.makePlots(), python.convergence.plotConvergence(), and python.convergence.test().
def python.convergence.test | ( | ) |
References python.convergence.plotConvergenceMulti().
Referenced by python.classifier.testVectorFast().
def python.convergence.test_func | ( | x | ) |
def python.convergence.test_func_sin | ( | x | ) |