SG++-Doxygen-Documentation
sgpp::pde::OperationLaplaceBsplineClenshawCurtis Class Reference

Implementation for BsplineClenshawCurtis functions of Laplace Operation, linear grids without boundaries. More...

#include <OperationLaplaceBsplineClenshawCurtis.hpp>

Inheritance diagram for sgpp::pde::OperationLaplaceBsplineClenshawCurtis:
sgpp::base::OperationMatrix

Public Member Functions

virtual void mult (sgpp::base::DataVector &alpha, sgpp::base::DataVector &result)
 Implementation of standard matrix multiplication. More...
 
 OperationLaplaceBsplineClenshawCurtis (sgpp::base::Grid *grid)
 Constructor that creates an own matrix i.e. More...
 
virtual ~OperationLaplaceBsplineClenshawCurtis ()
 Destructor. More...
 
- Public Member Functions inherited from sgpp::base::OperationMatrix
 OperationMatrix ()
 Constructor. More...
 
virtual ~OperationMatrix ()
 Destructor. More...
 

Detailed Description

Implementation for BsplineClenshawCurtis functions of Laplace Operation, linear grids without boundaries.

Constructor & Destructor Documentation

◆ OperationLaplaceBsplineClenshawCurtis()

sgpp::pde::OperationLaplaceBsplineClenshawCurtis::OperationLaplaceBsplineClenshawCurtis ( sgpp::base::Grid grid)
explicit

Constructor that creates an own matrix i.e.

matrix is destroyed by the destructor of OperationLaplaceBsplineClenshawCurtis

Parameters
gridthe sparse grid

◆ ~OperationLaplaceBsplineClenshawCurtis()

sgpp::pde::OperationLaplaceBsplineClenshawCurtis::~OperationLaplaceBsplineClenshawCurtis ( )
virtual

Destructor.

Member Function Documentation

◆ mult()

void sgpp::pde::OperationLaplaceBsplineClenshawCurtis::mult ( sgpp::base::DataVector alpha,
sgpp::base::DataVector result 
)
virtual

Implementation of standard matrix multiplication.

Parameters
alphaDataVector that is multiplied to the matrix
resultDataVector into which the result of multiplication is stored

int nabla phi_i(x) * nabla phi_j(x) dx = sum_k int (dx_k phi_i(x)) * (dx_k phi_j(x)) dx = sum_k int (phi'_{i_k}(x_k) * phi'_{i_k}(x_k) * prod_{l!=k} phi_{i_l}(x_l) * phi_{j_l}(x_l)) dx = sum_k int (phi'_{i_k}(x_k) * phi'_{j_k}(x_k)) dx_k * prod_{l!=k} int (phi_{i_l}(x_l) * phi_{j_l}(x_l)) dx_l

Implements sgpp::base::OperationMatrix.

References sgpp::base::BsplineClenshawCurtisBasis< LT, IT >::clenshawCurtisPoint(), sgpp::base::BsplineClenshawCurtisBasis< LT, IT >::eval(), sgpp::base::BsplineClenshawCurtisBasis< LT, IT >::evalDx(), sgpp::base::Grid::getBasis(), python.uq.operations.sparse_grid::getDegree(), sgpp::base::Grid::getDimension(), sgpp::base::GaussLegendreQuadRule1D::getLevelPointsAndWeightsNormalized(), sgpp::base::ClenshawCurtisTable::getPoint(), sgpp::base::HashGridStorage::getSize(), sgpp::base::DataVector::getSize(), sgpp::base::Grid::getSize(), sgpp::base::Grid::getStorage(), python.statsfileInfo::i, python.utils.statsfile2gnuplot::j, friedman::p, and python.leja::start.


The documentation for this class was generated from the following files: