![]() |
SG++-Doxygen-Documentation
|
Gradient-based nonlinear conjugate gradient method. More...
#include <NLCG.hpp>
Public Member Functions | |
| void | clone (std::unique_ptr< UnconstrainedOptimizer > &clone) const override |
| double | getBeta () const |
| double | getEpsilon () const |
| double | getGamma () const |
| ScalarFunctionGradient & | getObjectiveGradient () const |
| double | getRestartThreshold () const |
| double | getTolerance () const |
| NLCG (const ScalarFunction &f, const ScalarFunctionGradient &fGradient, size_t maxItCount=DEFAULT_N, double beta=DEFAULT_BETA, double gamma=DEFAULT_GAMMA, double tolerance=DEFAULT_TOLERANCE, double epsilon=DEFAULT_EPSILON, double restartThreshold=DEFAULT_RESTART_THRESHOLD) | |
| Constructor. More... | |
| NLCG (const NLCG &other) | |
| Copy constructor. More... | |
| void | optimize () override |
| Pure virtual method for optimization of the objective function. More... | |
| void | setBeta (double beta) |
| void | setEpsilon (double epsilon) |
| void | setGamma (double gamma) |
| void | setRestartThreshold (double restartThreshold) |
| void | setTolerance (double tolerance) |
| ~NLCG () override | |
| Destructor. More... | |
Public Member Functions inherited from sgpp::optimization::optimizer::UnconstrainedOptimizer | |
| const base::DataMatrix & | getHistoryOfOptimalPoints () const |
| const base::DataVector & | getHistoryOfOptimalValues () const |
| size_t | getN () const |
| ScalarFunction & | getObjectiveFunction () const |
| const base::DataVector & | getOptimalPoint () const |
| double | getOptimalValue () const |
| const base::DataVector & | getStartingPoint () const |
| void | setN (size_t N) |
| void | setStartingPoint (const base::DataVector &startingPoint) |
| UnconstrainedOptimizer (const ScalarFunction &f, size_t N=DEFAULT_N) | |
| Constructor. More... | |
| UnconstrainedOptimizer (const UnconstrainedOptimizer &other) | |
| Copy constructor. More... | |
| virtual | ~UnconstrainedOptimizer () |
| Destructor. More... | |
Static Public Attributes | |
| static constexpr double | DEFAULT_BETA = 0.5 |
| default beta (parameter for Armijo's rule) More... | |
| static constexpr double | DEFAULT_EPSILON = 1e-18 |
| default epsilon (parameter for Armijo's rule) More... | |
| static constexpr double | DEFAULT_GAMMA = 1e-2 |
| default gamma (parameter for Armijo's rule) More... | |
| static constexpr double | DEFAULT_RESTART_THRESHOLD = 0.1 |
| default restart threshold More... | |
| static constexpr double | DEFAULT_TOLERANCE = 1e-8 |
| default tolerance (parameter for Armijo's rule) More... | |
Static Public Attributes inherited from sgpp::optimization::optimizer::UnconstrainedOptimizer | |
| static const size_t | DEFAULT_N = 1000 |
| default maximal number of iterations or function evaluations More... | |
Protected Attributes | |
| double | alpha |
| restart threshold More... | |
| double | beta |
| beta (parameter for Armijo's rule) More... | |
| double | eps |
| epsilon (parameter for Armijo's rule) More... | |
| std::unique_ptr< ScalarFunctionGradient > | fGradient |
| objective function gradient More... | |
| double | gamma |
| gamma (parameter for Armijo's rule) More... | |
| double | tol |
| tolerance (parameter for Armijo's rule) More... | |
Protected Attributes inherited from sgpp::optimization::optimizer::UnconstrainedOptimizer | |
| std::unique_ptr< ScalarFunction > | f |
| objective function More... | |
| base::DataVector | fHist |
| search history vector (optimal values) More... | |
| double | fOpt |
| result of optimization (optimal function value) More... | |
| size_t | N |
| maximal number of iterations or function evaluations More... | |
| base::DataVector | x0 |
| starting point More... | |
| base::DataMatrix | xHist |
| search history matrix (optimal points) More... | |
| base::DataVector | xOpt |
| result of optimization (location of optimum) More... | |
Gradient-based nonlinear conjugate gradient method.
The method is restarted with the steepest descent direction if the normalized absolute value of the inner product of two successive gradients exceeds a "restart threshold" \(\alpha\).
| sgpp::optimization::optimizer::NLCG::NLCG | ( | const ScalarFunction & | f, |
| const ScalarFunctionGradient & | fGradient, | ||
| size_t | maxItCount = DEFAULT_N, |
||
| double | beta = DEFAULT_BETA, |
||
| double | gamma = DEFAULT_GAMMA, |
||
| double | tolerance = DEFAULT_TOLERANCE, |
||
| double | epsilon = DEFAULT_EPSILON, |
||
| double | restartThreshold = DEFAULT_RESTART_THRESHOLD |
||
| ) |
Constructor.
| f | objective function |
| fGradient | objective function gradient |
| maxItCount | maximal number of iterations |
| beta | beta (parameter for Armijo's rule) |
| gamma | gamma (parameter for Armijo's rule) |
| tolerance | tolerance (parameter for Armijo's rule) |
| epsilon | epsilon (parameter for Armijo's rule) |
| restartThreshold | restart threshold |
References sgpp::optimization::ScalarFunctionGradient::clone().
Referenced by clone().
| sgpp::optimization::optimizer::NLCG::NLCG | ( | const NLCG & | other | ) |
|
override |
Destructor.
|
overridevirtual |
| [out] | clone | pointer to cloned object |
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References NLCG().
| double sgpp::optimization::optimizer::NLCG::getBeta | ( | ) | const |
References beta.
| double sgpp::optimization::optimizer::NLCG::getEpsilon | ( | ) | const |
References eps.
| double sgpp::optimization::optimizer::NLCG::getGamma | ( | ) | const |
References gamma.
| ScalarFunctionGradient & sgpp::optimization::optimizer::NLCG::getObjectiveGradient | ( | ) | const |
References fGradient.
| double sgpp::optimization::optimizer::NLCG::getRestartThreshold | ( | ) | const |
References alpha.
| double sgpp::optimization::optimizer::NLCG::getTolerance | ( | ) | const |
References tol.
|
overridevirtual |
Pure virtual method for optimization of the objective function.
The result of the optimization process can be obtained by member functions, e.g., getOptimalPoint() and getOptimalValue().
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References alpha, sgpp::base::DataVector::append(), sgpp::base::DataMatrix::appendRow(), beta, sgpp::base::DataVector::dotProduct(), eps, sgpp::optimization::optimizer::UnconstrainedOptimizer::f, fGradient, sgpp::optimization::optimizer::UnconstrainedOptimizer::fHist, sgpp::optimization::optimizer::UnconstrainedOptimizer::fOpt, gamma, sgpp::optimization::Printer::getInstance(), sgpp::base::DataVector::l2Norm(), sgpp::optimization::optimizer::lineSearchArmijo(), sgpp::optimization::optimizer::UnconstrainedOptimizer::N, sgpp::optimization::Printer::printStatusBegin(), sgpp::optimization::Printer::printStatusEnd(), sgpp::optimization::Printer::printStatusUpdate(), sgpp::base::DataMatrix::resize(), create_scripts::s, tol, sgpp::base::DataVector::toString(), sgpp::optimization::optimizer::UnconstrainedOptimizer::x0, sgpp::optimization::optimizer::UnconstrainedOptimizer::xHist, and sgpp::optimization::optimizer::UnconstrainedOptimizer::xOpt.
| void sgpp::optimization::optimizer::NLCG::setBeta | ( | double | beta | ) |
| beta | beta (parameter for Armijo's rule) |
References beta.
| void sgpp::optimization::optimizer::NLCG::setEpsilon | ( | double | epsilon | ) |
| epsilon | epsilon (parameter for Armijo's rule) |
References eps.
| void sgpp::optimization::optimizer::NLCG::setGamma | ( | double | gamma | ) |
| gamma | gamma (parameter for Armijo's rule) |
References gamma.
| void sgpp::optimization::optimizer::NLCG::setRestartThreshold | ( | double | restartThreshold | ) |
| restartThreshold | restart threshold |
References alpha.
| void sgpp::optimization::optimizer::NLCG::setTolerance | ( | double | tolerance | ) |
| tolerance | tolerance (parameter for Armijo's rule) |
References tol.
|
protected |
restart threshold
Referenced by getRestartThreshold(), optimize(), python.learner.Classifier.Classifier::refineGrid(), and setRestartThreshold().
|
protected |
beta (parameter for Armijo's rule)
Referenced by getBeta(), optimize(), and setBeta().
|
static |
default beta (parameter for Armijo's rule)
|
static |
default epsilon (parameter for Armijo's rule)
|
static |
default gamma (parameter for Armijo's rule)
|
static |
default restart threshold
|
static |
default tolerance (parameter for Armijo's rule)
|
protected |
epsilon (parameter for Armijo's rule)
Referenced by getEpsilon(), optimize(), and setEpsilon().
|
protected |
objective function gradient
Referenced by getObjectiveGradient(), NLCG(), and optimize().
|
protected |
gamma (parameter for Armijo's rule)
Referenced by getGamma(), optimize(), and setGamma().
|
protected |
tolerance (parameter for Armijo's rule)
Referenced by getTolerance(), optimize(), and setTolerance().