![]()  | 
  
    SG++-Doxygen-Documentation
    
   | 
 
Gradient-based method of steepest descent. More...
#include <GradientDescent.hpp>
  
 Static Public Attributes | |
| static constexpr double | DEFAULT_BETA = 0.5 | 
| default beta (parameter for Armijo's rule)  More... | |
| static constexpr double | DEFAULT_EPSILON = 1e-18 | 
| default epsilon (parameter for Armijo's rule)  More... | |
| static constexpr double | DEFAULT_GAMMA = 1e-2 | 
| default gamma (parameter for Armijo's rule)  More... | |
| static const size_t | DEFAULT_MAX_IT_COUNT = 2000 | 
| default maximal number of iterations  More... | |
| static constexpr double | DEFAULT_TOLERANCE = 1e-8 | 
| default tolerance (parameter for Armijo's rule)  More... | |
  Static Public Attributes inherited from sgpp::optimization::optimizer::UnconstrainedOptimizer | |
| static const size_t | DEFAULT_N = 1000 | 
| default maximal number of iterations or function evaluations  More... | |
Protected Attributes | |
| double | beta | 
| beta (parameter for Armijo's rule)  More... | |
| double | eps | 
| epsilon (parameter for Armijo's rule)  More... | |
| std::unique_ptr< ScalarFunctionGradient > | fGradient | 
| objective function gradient  More... | |
| double | gamma | 
| gamma (parameter for Armijo's rule)  More... | |
| double | tol | 
| tolerance (parameter for Armijo's rule)  More... | |
  Protected Attributes inherited from sgpp::optimization::optimizer::UnconstrainedOptimizer | |
| std::unique_ptr< ScalarFunction > | f | 
| objective function  More... | |
| base::DataVector | fHist | 
| search history vector (optimal values)  More... | |
| double | fOpt | 
| result of optimization (optimal function value)  More... | |
| size_t | N | 
| maximal number of iterations or function evaluations  More... | |
| base::DataVector | x0 | 
| starting point  More... | |
| base::DataMatrix | xHist | 
| search history matrix (optimal points)  More... | |
| base::DataVector | xOpt | 
| result of optimization (location of optimum)  More... | |
Gradient-based method of steepest descent.
| sgpp::optimization::optimizer::GradientDescent::GradientDescent | ( | const ScalarFunction & | f, | 
| const ScalarFunctionGradient & | fGradient, | ||
| size_t | maxItCount = DEFAULT_MAX_IT_COUNT,  | 
        ||
| double | beta = DEFAULT_BETA,  | 
        ||
| double | gamma = DEFAULT_GAMMA,  | 
        ||
| double | tolerance = DEFAULT_TOLERANCE,  | 
        ||
| double | epsilon = DEFAULT_EPSILON  | 
        ||
| ) | 
Constructor.
| f | objective function | 
| fGradient | objective function gradient | 
| maxItCount | maximal number of iterations | 
| beta | beta (parameter for Armijo's rule) | 
| gamma | gamma (parameter for Armijo's rule) | 
| tolerance | tolerance (parameter for Armijo's rule) | 
| epsilon | epsilon (parameter for Armijo's rule) | 
References sgpp::optimization::ScalarFunctionGradient::clone().
Referenced by clone().
| sgpp::optimization::optimizer::GradientDescent::GradientDescent | ( | const GradientDescent & | other | ) | 
      
  | 
  override | 
Destructor.
      
  | 
  overridevirtual | 
| [out] | clone | pointer to cloned object | 
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References GradientDescent().
| double sgpp::optimization::optimizer::GradientDescent::getBeta | ( | ) | const | 
References beta.
| double sgpp::optimization::optimizer::GradientDescent::getEpsilon | ( | ) | const | 
References eps.
| double sgpp::optimization::optimizer::GradientDescent::getGamma | ( | ) | const | 
References gamma.
| ScalarFunctionGradient & sgpp::optimization::optimizer::GradientDescent::getObjectiveGradient | ( | ) | const | 
References fGradient.
| double sgpp::optimization::optimizer::GradientDescent::getTolerance | ( | ) | const | 
References tol.
      
  | 
  overridevirtual | 
Pure virtual method for optimization of the objective function.
The result of the optimization process can be obtained by member functions, e.g., getOptimalPoint() and getOptimalValue().
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References sgpp::base::DataVector::append(), sgpp::base::DataMatrix::appendRow(), beta, eps, sgpp::optimization::optimizer::UnconstrainedOptimizer::f, fGradient, sgpp::optimization::optimizer::UnconstrainedOptimizer::fHist, sgpp::optimization::optimizer::UnconstrainedOptimizer::fOpt, gamma, sgpp::optimization::Printer::getInstance(), sgpp::base::DataVector::l2Norm(), sgpp::optimization::optimizer::lineSearchArmijo(), sgpp::optimization::optimizer::UnconstrainedOptimizer::N, sgpp::optimization::Printer::printStatusBegin(), sgpp::optimization::Printer::printStatusEnd(), sgpp::optimization::Printer::printStatusUpdate(), sgpp::base::DataMatrix::resize(), create_scripts::s, tol, sgpp::base::DataVector::toString(), sgpp::optimization::optimizer::UnconstrainedOptimizer::x0, sgpp::optimization::optimizer::UnconstrainedOptimizer::xHist, and sgpp::optimization::optimizer::UnconstrainedOptimizer::xOpt.
| void sgpp::optimization::optimizer::GradientDescent::setBeta | ( | double | beta | ) | 
| beta | beta (parameter for Armijo's rule) | 
References beta.
| void sgpp::optimization::optimizer::GradientDescent::setEpsilon | ( | double | epsilon | ) | 
| epsilon | epsilon (parameter for Armijo's rule) | 
References eps.
| void sgpp::optimization::optimizer::GradientDescent::setGamma | ( | double | gamma | ) | 
| gamma | gamma (parameter for Armijo's rule) | 
References gamma.
| void sgpp::optimization::optimizer::GradientDescent::setTolerance | ( | double | tolerance | ) | 
| tolerance | tolerance (parameter for Armijo's rule) | 
References tol.
      
  | 
  protected | 
beta (parameter for Armijo's rule)
Referenced by getBeta(), optimize(), and setBeta().
      
  | 
  static | 
default beta (parameter for Armijo's rule)
      
  | 
  static | 
default epsilon (parameter for Armijo's rule)
      
  | 
  static | 
default gamma (parameter for Armijo's rule)
      
  | 
  static | 
default maximal number of iterations
      
  | 
  static | 
default tolerance (parameter for Armijo's rule)
      
  | 
  protected | 
epsilon (parameter for Armijo's rule)
Referenced by getEpsilon(), optimize(), and setEpsilon().
      
  | 
  protected | 
objective function gradient
Referenced by getObjectiveGradient(), GradientDescent(), and optimize().
      
  | 
  protected | 
gamma (parameter for Armijo's rule)
Referenced by getGamma(), optimize(), and setGamma().
      
  | 
  protected | 
tolerance (parameter for Armijo's rule)
Referenced by getTolerance(), optimize(), and setTolerance().