Implementation of VectorFunctionHessian that wraps a std::function object.
More...
#include <WrapperVectorFunctionHessian.hpp>
Implementation of VectorFunctionHessian that wraps a std::function object.
◆ FunctionHessianEvalType
◆ WrapperVectorFunctionHessian()
sgpp::optimization::WrapperVectorFunctionHessian::WrapperVectorFunctionHessian |
( |
size_t |
d, |
|
|
size_t |
m, |
|
|
FunctionHessianEvalType |
fHessian |
|
) |
| |
|
inline |
Constructor.
- Parameters
-
d | dimension of the domain |
m | number of components |
fHessian | function gradient to be wrapped |
Referenced by clone().
◆ ~WrapperVectorFunctionHessian()
sgpp::optimization::WrapperVectorFunctionHessian::~WrapperVectorFunctionHessian |
( |
| ) |
|
|
inlineoverride |
◆ clone()
void sgpp::optimization::WrapperVectorFunctionHessian::clone |
( |
std::unique_ptr< VectorFunctionHessian > & |
clone | ) |
const |
|
inlineoverridevirtual |
◆ eval()
- Parameters
-
[in] | x | evaluation point \(\vec{x} \in [0, 1]^d\) |
[out] | value | \(g(\vec{x})\) |
[out] | gradient | Jacobian \(\nabla g(\vec{x}) \in \mathbb{R}^{m \times d}\) |
[out] | hessian | \(m\)-vector of Hessians \(\nabla^2 g_i(\vec{x}) \in \mathbb{R}^{d \times d}\) |
Implements sgpp::optimization::VectorFunctionHessian.
References fHessian.
◆ fHessian
function Hessian to be wrapped
Referenced by clone(), and eval().
The documentation for this class was generated from the following file: