![]()  | 
  
    SG++-Doxygen-Documentation
    
   | 
 
Sparse grid interpolant of a scalar-valued function. More...
#include <InterpolantScalarFunction.hpp>
  
 Public Member Functions | |
| void | clone (std::unique_ptr< ScalarFunction > &clone) const override | 
| double | eval (const base::DataVector &x) override | 
| Evaluation of the function.  More... | |
| const base::DataVector & | getAlpha () const | 
| InterpolantScalarFunction (base::Grid &grid, const base::DataVector &alpha) | |
| Constructor.  More... | |
| void | setAlpha (const base::DataVector &alpha) | 
| ~InterpolantScalarFunction () override | |
| Destructor.  More... | |
  Public Member Functions inherited from sgpp::optimization::ScalarFunction | |
| size_t | getNumberOfParameters () const | 
| ScalarFunction (size_t d) | |
| Constructor.  More... | |
| virtual | ~ScalarFunction () | 
| Destructor.  More... | |
Protected Attributes | |
| base::DataVector | alpha | 
| coefficient vector  More... | |
| base::Grid & | grid | 
| sparse grid  More... | |
| std::unique_ptr< base::OperationEval > | opEval | 
| pointer to evaluation operation  More... | |
  Protected Attributes inherited from sgpp::optimization::ScalarFunction | |
| size_t | d | 
| dimension of the domain  More... | |
Sparse grid interpolant of a scalar-valued function.
More generally, the function can be any linear combination \(f\colon [0, 1]^d \to \mathbb{R}\), \(f(\vec{x}) = \sum_{k=1}^N \alpha_k \varphi_k(\vec{x})\) of the basis functions \(\varphi_k = \varphi_{\vec{\ell}_k,\vec{i}_k}\) of a sparse grid with grid points \(\vec{x}_k = \vec{x}_{\vec{\ell}_k,\vec{i}_k}\). But most often, the function (e.g., its coefficients) is constructed as an interpolant at the grid points for some function values.
      
  | 
  inline | 
Constructor.
Do not destruct the grid before the InterpolantScalarFunction object!
| grid | sparse grid | 
| alpha | coefficient vector | 
Referenced by clone().
      
  | 
  inlineoverride | 
Destructor.
      
  | 
  inlineoverridevirtual | 
| [out] | clone | pointer to cloned object | 
Implements sgpp::optimization::ScalarFunction.
References alpha, grid, and InterpolantScalarFunction().
      
  | 
  inlineoverridevirtual | 
Evaluation of the function.
| x | evaluation point \(\vec{x} \in [0, 1]^d\) | 
Implements sgpp::optimization::ScalarFunction.
References alpha, sgpp::optimization::ScalarFunction::d, and opEval.
      
  | 
  inline | 
References alpha.
      
  | 
  inline | 
| alpha | coefficient vector | 
References alpha.
      
  | 
  protected | 
coefficient vector
Referenced by clone(), eval(), getAlpha(), python.learner.Classifier.Classifier::refineGrid(), and setAlpha().
      
  | 
  protected | 
sparse grid
Referenced by clone(), python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().
      
  | 
  protected | 
pointer to evaluation operation
Referenced by eval().