| 
| def  | __init__ (self) | 
|   | 
| def  | update (self, grid, v, gpi, params, args, kws) | 
|   | 
| def  | __init__ (self) | 
|   | 
| def  | getKnowledgeType (self) | 
|   | 
| def  | rank (self, grid, gp, alphas, params, t=0, args, kws) | 
|   | 
| def  | update (self, grid, v, gpi, params) | 
|   | 
◆ __init__()
      
        
          | def python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking.__init__  | 
          ( | 
            | 
          self | ) | 
           | 
        
      
 
References python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking._bilinearForm, python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking._linearForm, and python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking._linearForm.
 
 
◆ update()
      
        
          | def python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking.update  | 
          ( | 
            | 
          self,  | 
        
        
           | 
           | 
            | 
          grid,  | 
        
        
           | 
           | 
            | 
          v,  | 
        
        
           | 
           | 
            | 
          gpi,  | 
        
        
           | 
           | 
            | 
          params,  | 
        
        
           | 
           | 
            | 
          args,  | 
        
        
           | 
           | 
            | 
          kws  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Compute ranking for variance estimation
\argmax_{i \in \A} | v_i (2 A_i v_i - v_i b_i) |
@param grid: Grid grid
@param v: numpy array coefficients
@param admissibleSet: AdmissibleSet
 
References python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking._bilinearForm, python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking._linearForm, python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking._linearForm, and python.uq.operations.sparse_grid.getBasis().
 
 
The documentation for this class was generated from the following file: