SG++-Doxygen-Documentation
|
The class implements heuristics for testing if the learn process should be finished before learner is overfitted. More...
Public Member Functions | |
def | __init__ (self) |
Contructor. More... | |
def | fromJson (cls, jsonObject) |
Restores the TrainingStopPolicy object from the json object with attributes. More... | |
def | getAccuracyLimit (self) |
Returns the accuracy on validation data, that have to be achieved. More... | |
def | getAdaptiveIterationLimit (self) |
Returns the maximal number of refinement iterations. More... | |
def | getEpochsLimit (self) |
Returns the maximal number of iterations, during which accuracy can decreases. More... | |
def | getGridSize (self, learner) |
def | getGridSizeLimit (self) |
Returns the maximal grid size. More... | |
def | getMSELimit (self) |
Returns MSE on validation data, that have to be achieved. More... | |
def | hasGridSizeChanged (self, learner) |
def | hasLimitReached (self, learner) |
def | isTrainingComplete (self, learner) |
Checks if learning process have to be stopped. More... | |
def | setAccuracyLimit (self, limit) |
Setter for accuracy limit. More... | |
def | setAdaptiveIterationLimit (self, limit) |
def | setEpochsLimit (self, limit) |
Setter for epochs limit. More... | |
def | setGridSizeLimit (self, limit) |
Setter for maximal grid size. More... | |
def | setMSELimit (self, limit) |
Setter for MSE limit. More... | |
def | toString (self) |
Returns a string that represents the object. More... | |
The class implements heuristics for testing if the learn process should be finished before learner is overfitted.
The test is made by calling method isTrainingComplete(learner)
of the class, which returns True if training process should be finished.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.__init__ | ( | self | ) |
Contructor.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__accuracyLimit, python.learner.TrainingStopPolicy.TrainingStopPolicy.__adaptiveIterationLimit, python.learner.TrainingStopPolicy.TrainingStopPolicy.__epochsLimit, python.learner.TrainingStopPolicy.TrainingStopPolicy.__gridSizeLimit, python.learner.TrainingStopPolicy.TrainingStopPolicy.__MSELimit, and python.learner.TrainingStopPolicy.TrainingStopPolicy.__oldGridSize.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.fromJson | ( | cls, | |
jsonObject | |||
) |
Restores the TrainingStopPolicy object from the json object with attributes.
cls | python keyword (do not specify) |
jsonObject | A json object. |
Referenced by python.uq.sampler.asgc.ASGCSampler.ASGCSampler.setMemento(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setMemento(), python.uq.learner.Learner.Learner.setMemento(), and python.uq.uq_setting.UQSetting.UQSetting.setMemento().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getAccuracyLimit | ( | self | ) |
Returns the accuracy on validation data, that have to be achieved.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__accuracyLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getAdaptiveIterationLimit | ( | self | ) |
Returns the maximal number of refinement iterations.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__adaptiveIterationLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getEpochsLimit | ( | self | ) |
Returns the maximal number of iterations, during which accuracy can decreases.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__epochsLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getGridSize | ( | self, | |
learner | |||
) |
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getGridSizeLimit | ( | self | ) |
Returns the maximal grid size.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__gridSizeLimit.
Referenced by python.uq.sampler.asgc.ASGCSamplerStopPolicy.ASGCSamplerStopPolicy.hasLimitReached(), and python.learner.TrainingStopPolicy.TrainingStopPolicy.hasLimitReached().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.getMSELimit | ( | self | ) |
Returns MSE on validation data, that have to be achieved.
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__MSELimit.
Referenced by python.learner.TrainingStopPolicy.TrainingStopPolicy.hasLimitReached().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.hasGridSizeChanged | ( | self, | |
learner | |||
) |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__oldGridSize, and python.learner.TrainingStopPolicy.TrainingStopPolicy.getGridSize().
Referenced by python.uq.sampler.asgc.ASGCSamplerStopPolicy.ASGCSamplerStopPolicy.isTrainingComplete(), and python.learner.TrainingStopPolicy.TrainingStopPolicy.isTrainingComplete().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.hasLimitReached | ( | self, | |
learner | |||
) |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__adaptiveIterationLimit, python.learner.TrainingStopPolicy.TrainingStopPolicy.getGridSizeLimit(), and python.learner.TrainingStopPolicy.TrainingStopPolicy.getMSELimit().
Referenced by python.uq.sampler.asgc.ASGCSamplerStopPolicy.ASGCSamplerStopPolicy.isTrainingComplete(), and python.learner.TrainingStopPolicy.TrainingStopPolicy.isTrainingComplete().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.isTrainingComplete | ( | self, | |
learner | |||
) |
Checks if learning process have to be stopped.
learner | Learner object |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__oldGridSize, python.learner.TrainingStopPolicy.TrainingStopPolicy.getGridSize(), python.learner.TrainingStopPolicy.TrainingStopPolicy.hasGridSizeChanged(), and python.learner.TrainingStopPolicy.TrainingStopPolicy.hasLimitReached().
def python.learner.TrainingStopPolicy.TrainingStopPolicy.setAccuracyLimit | ( | self, | |
limit | |||
) |
Setter for accuracy limit.
limit | double accuracy on validation data, that have to be achieved |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__accuracyLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.setAdaptiveIterationLimit | ( | self, | |
limit | |||
) |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__adaptiveIterationLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.setEpochsLimit | ( | self, | |
limit | |||
) |
Setter for epochs limit.
limit | integer Maximal number of iterations, during which accuracy can decreases |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__epochsLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.setGridSizeLimit | ( | self, | |
limit | |||
) |
Setter for maximal grid size.
limit | integer maximal grid size |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__gridSizeLimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.setMSELimit | ( | self, | |
limit | |||
) |
Setter for MSE limit.
limit | double minimal MSE on validation data, that have to be achieved |
References python.learner.TrainingStopPolicy.TrainingStopPolicy.__MSELimit.
def python.learner.TrainingStopPolicy.TrainingStopPolicy.toString | ( | self | ) |
Returns a string that represents the object.
References create_dataset.type.
Referenced by python.uq.learner.Learner.Learner.createMemento().