![]() |
SG++-Doxygen-Documentation
|
Sparse grid interpolant Hessian of a scalar-valued function. More...
#include <InterpolantScalarFunctionHessian.hpp>
Public Member Functions | |
| void | clone (std::unique_ptr< ScalarFunctionHessian > &clone) const override |
| double | eval (const base::DataVector &x, base::DataVector &gradient, base::DataMatrix &hessian) override |
| Evaluation of the function, its gradient and its Hessian. More... | |
| const base::DataVector & | getAlpha () const |
| InterpolantScalarFunctionHessian (base::Grid &grid, const base::DataVector &alpha) | |
| Constructor. More... | |
| void | setAlpha (const base::DataVector &alpha) |
| ~InterpolantScalarFunctionHessian () override | |
| Destructor. More... | |
Public Member Functions inherited from sgpp::optimization::ScalarFunctionHessian | |
| size_t | getNumberOfParameters () const |
| ScalarFunctionHessian (size_t d) | |
| Constructor. More... | |
| virtual | ~ScalarFunctionHessian () |
| Destructor. More... | |
Protected Attributes | |
| base::DataVector | alpha |
| coefficient vector More... | |
| base::Grid & | grid |
| sparse grid More... | |
| std::unique_ptr< base::OperationEvalHessian > | opEvalHessian |
| pointer to evaluation operation More... | |
Protected Attributes inherited from sgpp::optimization::ScalarFunctionHessian | |
| size_t | d |
| dimension of the domain More... | |
Sparse grid interpolant Hessian of a scalar-valued function.
|
inline |
Constructor.
Do not destruct the grid before the InterpolantScalarFunctionHessian object!
| grid | sparse grid |
| alpha | coefficient vector |
Referenced by clone().
|
inlineoverride |
Destructor.
|
inlineoverridevirtual |
| [out] | clone | pointer to cloned object |
Implements sgpp::optimization::ScalarFunctionHessian.
References alpha, grid, and InterpolantScalarFunctionHessian().
|
inlineoverridevirtual |
Evaluation of the function, its gradient and its Hessian.
| x | evaluation point \(\vec{x} \in [0, 1]^d\) | |
| [out] | gradient | gradient \(\nabla f(\vec{x}) \in \mathbb{R}^d\) |
| [out] | hessian | Hessian matrix \(H_f(\vec{x}) \in \mathbb{R}^{d \times d}\) |
Implements sgpp::optimization::ScalarFunctionHessian.
References alpha, sgpp::optimization::ScalarFunctionHessian::d, and opEvalHessian.
|
inline |
References alpha.
|
inline |
| alpha | coefficient vector |
References alpha.
|
protected |
coefficient vector
Referenced by clone(), eval(), getAlpha(), python.learner.Classifier.Classifier::refineGrid(), and setAlpha().
|
protected |
sparse grid
Referenced by clone(), python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.uq.learner.Regressor.Regressor::learnData(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.learner.Classifier.Classifier::updateResults(), python.learner.Regressor.Regressor::updateResults(), and python.uq.learner.Regressor.Regressor::updateResults().
|
protected |
pointer to evaluation operation
Referenced by eval().