![]()  | 
  
    SG++-Doxygen-Documentation
    
   | 
 
Implementation for Poly functions of Laplace Operation, linear grids without boundaries. More...
#include <OperationLaplacePoly.hpp>
  
 Public Member Functions | |
| virtual void | mult (sgpp::base::DataVector &alpha, sgpp::base::DataVector &result) | 
| Implementation of standard matrix multiplication.  More... | |
| OperationLaplacePoly (sgpp::base::Grid *grid) | |
| Constructor that creates an own matrix i.e.  More... | |
| virtual | ~OperationLaplacePoly () | 
| Destructor.  More... | |
  Public Member Functions inherited from sgpp::base::OperationMatrix | |
| OperationMatrix () | |
| Constructor.  More... | |
| virtual | ~OperationMatrix () | 
| Destructor.  More... | |
Implementation for Poly functions of Laplace Operation, linear grids without boundaries.
      
  | 
  explicit | 
Constructor that creates an own matrix i.e.
matrix is destroyed by the destructor of OperationLaplacePoly
| grid | the sparse grid | 
      
  | 
  virtual | 
Destructor.
      
  | 
  virtual | 
Implementation of standard matrix multiplication.
| alpha | DataVector that is multiplied to the matrix | 
| result | DataVector into which the result of multiplication is stored | 
int nabla phi_i(x) * nabla phi_j(x) dx = sum_k int (dx_k phi_i(x)) * (dx_k phi_j(x)) dx = sum_k int (phi'_{i_k}(x_k) * phi'_{i_k}(x_k) * prod_{l!=k} phi_{i_l}(x_l) * phi_{j_l}(x_l)) dx = sum_k int (phi'_{i_k}(x_k) * phi'_{j_k}(x_k)) dx_k * prod_{l!=k} int (phi_{i_l}(x_l) * phi_{j_l}(x_l)) dx_l
Implements sgpp::base::OperationMatrix.
References sgpp::base::PolyBasis< LT, IT >::eval(), sgpp::base::PolyBasis< LT, IT >::evalDx(), sgpp::base::Grid::getBasis(), python.uq.operations.sparse_grid::getDegree(), sgpp::base::Grid::getDimension(), sgpp::base::GaussLegendreQuadRule1D::getLevelPointsAndWeightsNormalized(), sgpp::base::HashGridStorage::getSize(), sgpp::base::DataVector::getSize(), sgpp::base::Grid::getSize(), sgpp::base::Grid::getStorage(), python.statsfileInfo::i, python.utils.statsfile2gnuplot::j, and friedman::p.